
Portfolio allocation under market uncertainty: an application
of multi-stage stochastic mixed-integer models

Lars Beute

Groningen, January 1, 2024



Master’s thesis Econometrics, Operations Research and Actuarial Studies

Supervisor: Dr. W. Romeijnders
Second Assessor: Dr. K.W. Chau



Portfolio allocation under market uncertainty: an
application of multi-stage stochastic mixed-integer models

Lars Beute

Fall 2023

Abstract

By representing future uncertain asset prices through scenario trees, we formulate the
portfolio selection problem as a two-stage stochastic model. The objective is to minimize the
conditional value at risk of the portfolio loss while simultaneously adhering to a set of prac-
tical constraints. Particularly, we incorporate cardinality constraints, determining the fixed
number of distinct assets to include in the portfolio, and minimum position size constraints.
Introducing these constraints involves utilizing integer variables, thereby transforming the
two-stage stochastic model into a two-stage stochastic mixed-integer model. We propose
a novel decomposition-based algorithm to solve this model. Furthermore, we introduce a
straightforward parametric copula-based method for generating asset return scenarios and
demonstrate that this approach effectively captures the fat-tail property of asset return dis-
tributions. Applying this method to generate scenarios for the proposed two-stage model,
we find that the portfolios produced by our model not only track the return levels of a bench-
mark index but also exhibit significantly greater risk-efficiency. Moreover, we demonstrate
that by employing a dynamic portfolio rebalancing strategy, risk-efficiency is even further
enhanced. We demonstrate that these results are consistent under our proposed scenario-
generation method and are robust to parameter changes. Lastly, a three-stage extension
is proposed and we show that portfolios produced under this three-stage extension exhibit
the greatest risk-efficiency.
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1 Introduction & Literature Review

The foundational work by Markowitz (1952) on modern portfolio theory laid the ground-
work for the portfolio selection problem (PSP). In modern portfolio theory, investors are as-
sumed to be risk-averse, implying they would consistently opt for the portfolio with the lowest
risk when presented with two financial asset portfolios offering the same level of return. The
PSP is amongst the most widely studied problems in financial literature derived from this the-
ory and revolves around the creation of an optimal allocation of financial assets. This allocation
aims to either minimize expected portfolio risk for a given expected level of return or maximize
expected portfolio return for a given level of risk. In the paper by Markowitz, the PSP is for-
mulated as a mean-variance (MV) model, which takes on the form of a quadratic optimization
model. In this model, given its tractability, the covariance of individual asset returns in a
portfolio is used as a risk measure.

Despite its successes, the MV model has faced criticism. Notably, one of the assumptions
made in the model is that the asset returns from which the covariance is derived follow a nor-
mal distribution. However, as demonstrated in e.g. McNeil, Frey, and Embrechts (2015) and
Fama (1970), financial return series typically exhibit a fat-tailed leptokurtic distribution, char-
acterized by excess kurtosis. Furthermore, as argued in He and Qu (2014), market uncertainty
is a significant factor that investors commonly weigh in their decision-making. However, the
conventional MV model traditionally computes the expected return and covariance between as-
sets by directly utilizing historical data. This approach has been demonstrated to inadequately
address future market fluctuations, emphasized by the substantial estimation errors in both
the vector of expected returns and the covariance matrix found in Jobson and Korkie (1980)
and Merton (1980). Moreover, employing the covariance of individual asset returns as the risk
measure in a portfolio has faced criticism. In the context of the PSP, where the primary em-
phasis lies in minimizing downside portfolio risk exclusively, utilizing risk metrics like Value
at Risk (VaR) or Conditional Value at Risk (CVaR) may be more suitable. Finally, when includ-
ing practical constraints in the MV model, the PSP transforms in an NP-complete problem for
feasibility and an NP-hard problem for optimization (Bienstock (1996); Mansini and Speranza
(1999)). Examples of such practical constraints involve measures designed to mitigate opera-
tional costs in portfolio management, including limitations on the number of unique stocks in a
feasible allocation (cardinality constraints) (see e.g. Gao and Li (2013)) and minimum position
size constraints for each unique stock (see e.g. Bonami and Lejeune (2009)).

Evidently, we can argue that utilizing the classical MV model is a suboptimal approach
for addressing the PSP. In existing literature, different directions have been proposed to deal
with the model limitations. One approach is to modify the risk measure in the MV model to a
coherent risk measure such as CVaR as developed in Rockafellar and Uryasev (2000). Utilizing
the CVaR as a risk measure in the MV model, the PSP transforms to a linear optimization
problem, enhancing solvability. Other suggested approaches vary from improved estimates of
correlation coefficients (Elton, Gruber, and Spitzer, 2006) to adding an ex-post time dimension
for obtaining the optimal portfolio duration time (Fahmy, 2020) to effective risk diversification
approaches (Cesarone and Tardella, 2017).

The absent yet crucial factor that many of these proposed approaches do not take into ac-
count is market uncertainty. The MV model makes simplifies the complex reality of financial
markets, and its assumptions may not adequately capture the uncertainties and dynamics
that investors face. It is imperative to make decisions on investment strategies while consid-
ering market conditions and the inherent uncertainty that comes with it (Li and Xu, 2013).
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In this study, we prioritize addressing this specific factor by modeling asset returns as a sce-
nario tree. The type of asset we focus on are stocks. We generate scenarios for future stock
returns utilizing a parametric copula-based method. We illustrate that this approach provides
a straightforward method for generating scenarios and, importantly, proves to be effective in
addressing distributional concerns that were previously raised in the classic MV model. We
introduce a general structure for the PSP and we show that, leveraging the scenario tree for
future asset prices, this framework naturally evolves into the structure of a two-stage stochas-
tic model (SM). This two-stage SM is tailored to the CVaR risk measure, resulting in a linear
two-stage SM. With the incorporation of additional practical constraints such as cardinality
and position size constraints, we will find that the resulting model adopts the structure of a
linear two-stage stochastic mixed-integer model (SMIM).

SMIMs, which merge mixed-integer models (MIMs) with SMs, present significant concep-
tual and computational difficulties due to the discrete and non-convex aspects of MIMs and the
presence of uncertainty through SMs. Notwithstanding the hurdles, numerous applications
have emerged across various domains, including supply chain design (Werner, Uggen, Fodstad,
Lium, and Egging, 2011), process engineering (Li, Armagan, and Barton, 2011) and many
more. In such models, first-stage decisions are made here-and-now while some information is
uncertain, whereas later-stage decisions, so-called recourse decisions, are made after some of
the uncertainties are revealed. In the context of the PSP, this could be portfolio rebalancing
decisions based on stock price fluctuations. The goal of a SMIM is to optimize an objective func-
tion that accounts for both the costs of the first-stage decisions as well as the expected costs of
the recourse decisions.

In Gülten and Ruszczyński (2015), a two-stage SM with conditional measures of risk is
constructed. They find that two-stage models outperform single-stage models in terms of long-
term portfolio performance. In Topaloglou, Vladimirou, and Zenios (2008), a multi-stage SM for
international portfolio management is developed. In line with Gülten and Ruszczyński (2015),
they find that multi-stage models consistently outperform single-stage models. One of the first
approaches to solving a PSP with a two-stage SMIM is reported by Stoyan and Kwon (2011).
Inspired by this approach, He and Qu (2014) propose a two-stage SMIM similar to the SM in
Topaloglou et al. (2008). They show that the portfolios derived from the two-stage SMIM can
match the market index while holding less assets. Cui, Bai, Ding, Parkers, Qu, He, and Li
(2020) extend on this work by considering a similar two-stage SMIM. Results are in line with
the aforementioned studies.

Compared to linear SMs with continuous recourse decision variables, for which efficient
solution methods exist, two main difficulties arise in solving SMIMs. Firstly, one has to solve
many different integer programs, which generally are NP-hard. Secondly, unlike the situ-
ation with continuous recourse decision variables where the expected value function of the
future-stage costs is typically convex, the imposition of integer restrictions on recourse deci-
sion variables often leads to the non-convexity of the expected value function (Schutlz, Stougie,
and van der Vlerk, 1998). Efficient solution methods for SMIMs that follow a certain standard
structure, typically referred to as the class of mixed-integer recourse models, exist and are
listed in e.g. Li and Grossmann (2019). However, evident from the existing literature, SMIMs
that address the PSP typically do not adhere to this standard mixed-integer recourse struc-
ture. This acknowledgement requires for innovative, novel solution methods. In Stoyan and
Kwon (2011), the developed SMIM is decomposed into sub-problems and these sub-problems
are further broken-down by relaxing difficult constraints. He and Qu (2014) deal with the com-
putational difficulties by utilizing a simplification and hybrid solution method to integrate a
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standard branch-and-bound. Cui et al. (2020) extend on this approach by integrating a genetic
algorithm and a linear programming solver to solve the SMIM.

This study contributes to the existing literature through several dimensions. Firstly, it in-
troduces a two-stage SMIM for the PSP similar to those explored in prior research, but the
stock return scenarios we use in the SMIM are generated utilizing a parametric copula-based
method. We demonstrate that, in contrast to the approaches employed in existing literature,
this method offers a simpler and well-defined mathematical framework for generating scenar-
ios. Nonetheless, it effectively captures the distinctive statistical properties of stock returns.
Secondly, where the existing literature on SMIMs that address the PSP utilize solving algo-
rithms that yield approximate solutions, we propose a novel decomposition-based algorithm
that yields exact solutions. Thirdly, while the existing literature typically focus solely on the
return rates and composition of the derived portfolios, our study goes a step further. In addi-
tion to these aspects, we incorporate statistics on the observed CVaR. This inclusion is crucial
in demonstrating that SMIMs not only have the capability to align with benchmark indices in
terms of return rates but also possess the potential to generate portfolios that exhibit signifi-
cantly greater risk efficiency. This expanded perspective contributes to a more comprehensive
understanding of the implications and benefits of utilizing SMIMs in the context of portfolio
selection. Lastly, we are first to propose a three-stage SMIM for the PSP based on the two-
stage SMIM. The impact of including an additional stage is thoroughly analyzed both through
considering the derived portfolio performance as well as the derived portfolio compositions.

The remainder of this study is organized as follows. In Section 2, we briefly describe the
specific problem setting we consider and we provide an extensive discussion on the methodology
for both the two-stage- and three-stage SMIMs. In Section 3, we discuss the solution method-
ology utilized to solve the two- and three-stage SMIM. Section 4 covers the methodology used
for scenario modelling. In Section 5 a preliminary analysis on the data is presented. Following
this analysis, in Section 6, the methodology on scenario-generation is employed on the data to
generate scenarios and the in-sample quality of these scenarios is analyzed. In Section 7, the
empirical portfolio experiments performed are described and the results are discussed. Finally,
in Section 8, we summarize and discuss the findings of this study. Additionally, we propose
directions for further research.

2 PSP Model

The main focus of this section is to develop a two-stage SMIM for the PSP. We initiate this
section with a brief description of the problem setting. We continue by introducing a notation
for the general PSP framework. By representing asset prices through scenario trees, we dis-
cover that this general PSP framework can be adapted to have the structure of a two-stage
SMIM. Expanding this model with practical constraints, we observe that the resulting formu-
lation aligns with the structure of a two-stage SMIM. Furthermore, we propose an extension
to transform this two-stage SMIM into a three-stage SMIM.

2.1 Problem Setting

In this paper, we consider the problem of a company concerned with the allocation and
active management of a set of one type of financial assets: stocks. The company wants to gen-
erate profit from market returns simultaneously while maintaining control of their potential
downside risk exposure. We model the problem in such a way that it presents itself in stages.
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In the first stage, the company decides on an optimal portfolio allocation while simultaneously
taking into consideration potential market fluctuations and resulting future stock prices. Con-
sequently, the company ends up with an initial portfolio consisting of a mix of stocks. The stock
prices in the initial phase are assumed to be known, that is, we can accurately value the portfo-
lio of the company in the first stage. The initial allocation must be feasible within a set of real
world constraints and circumstances that investors face. These constraints include cardinality
constraints and minimum position size constraints. In the second stage, the company has the
opportunity to reallocate their portfolio. This can be of interest for the company, as it is likely
that new market information on stock prices (returns) affect the optimal portfolio allocation.
Trivially, the reallocation should be a feasible selection and the goal of the company remains to
generate profit from market returns simultaneously while maintaining control of the potential
downside risk exposure. This portfolio is used to assess the ultimate portfolio return and risk
in the third stage. We operate under the assumption that the time periods between the stages
are one week each. This choice of a weekly period is deemed appropriate for the problem at
hand. Smaller time periods might incur high portfolio management costs, whereas longer time
periods could potentially lead to underperforming portfolios, as their performance is assessed
less frequently.

2.2 General Framework

Consider portfolio weight vector w = (w1, ...,wS) corresponding to a portfolio comprising
S stocks with wi ∈ [0,1] the portfolio weight of stock i such that

∑S
i=1 wi = 1. Assume that

portfolio returns are generated by the function r(w,ξ) : [0,1]S ×RS →R, with ξ a random vector
representing uncertain market returns. The most well-known example of such a function is
given by r(w,ξ) = w⊤ξ, which yields the weighted average random return. Similarly, assume
that portfolio risk is generated by the function ρ(w,ξ) : [0,1]S×RS →R, with ρ(·) a risk measure.
We introduce a general notation for the PSP framework, which will also serve as the framework
we use to establish a model for the PSP with a two-stage SMIM structure:

min
w

Eξ[ρ(w,ξ)] (1)

s.t. Eξ[r(w,ξ)]≥µ
w ∈ F.

We aim to construct an optimal portfolio weight vector w∗ with the dual purpose of minimiz-
ing the expected portfolio risk and guaranteeing the achievement of a predetermined return
rate µ ∈ R. The set F represents the set of feasible portfolio weight vectors. To illustrate how
this framework can be applied, consider the MV model outlined in Markowitz (1952). In the
Markowitz model, r(w,ξ) is defined as r(w,ξ) = w⊤ξ and the risk measure ρ(w,ξ) is defined as
ρ(w,ξ) = w⊤Σξw, where Σξ is the covariance matrix of the uncertain market returns encapsu-
lated in ξ.

Evidently, the framework presented in (1) is adaptable in numerous ways to develop a
PSP model that aligns with the particular context of a given problem. Our attention will be
directed towards an adaptation wherein the PSP is structured as a two-stage SMIM. To enact
this modification, we utilize a modeling approach where future stock prices are conceptualized
as part of a large three-stage scenario tree. Let P = (P1, ...,PS) denote a vector comprising the
current price levels of S distinct stocks, representing the first-stage price levels. Similarly, let
Pn = (Pn

1 , ...,Pn
S) be a vector encompassing the future price levels in scenario n in the second
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stage (1 ≤ n ≤ N). Additionally, let P(n, j) = (P(n, j)
1 , ...,P(n, j)

S ) be a vector comprising the future
price levels in scenario (n, j) in the third stage stage, conditional on Pn (1 ≤ j ≤ Jn). We make
the modelling decision to have an equal amount of third-stage scenarios (n, j) for every second-
stage scenario n, such that we can write Jn = J. In Figure 1a, an example scenario tree in this
setting is displayed. This scenario tree can be directly linked to our problem setting: in the first
stage, the company allocates its capital to a portfolio at prices P, given the potential second-
and third-stage prices. Subsequently, in the second stage, the company observes the price
vector Pn and has the opportunity to adjust its portfolio through rebalancing. Rebalancing
decisions are driven by an assessment of potential third-stage prices P(n, j) and the risk and
return rates achieved up to that point. In the context of two-stage SMIMs, the initial portfolio
decisions can be referred to as first-stage decisions and the rebalance decisions can be referred
to as recourse actions.

To overcome potential challenges highlighted in e.g. Li and Grossmann (2019) regarding
the size of the scenario tree and its potential impact on solving an associated SMIM, we will
initially make a slight adjustment to the problem setting as outlined above. This adjustment
aligns with the modeling methodology presented in e.g. He and Qu (2014) and Cui et al. (2020).
For each scenario n in the second stage, we aggregate third-stage scenarios (n, j) and com-
pute the average price vector P̄n = (P̄n

1 , ..., P̄n
S). This consolidation allows us to transform the

original three-stage tree into a more manageable two-stage structure, as displayed in Figure
1b. Observe that now, all the information regarding future price levels is encapsulated in the
second-stage scenarios.

P = (10,10)Stage 1

Stage 2

Stage 3

P1 = (11,10.5)

P(1,1) = (12,10) P(1,2) = (10,11)

P2 = (9,9.5)

P(2,1) = (8,9) P(2,2) = (9,9.5)

(a) Three-Stage Scenario Tree

P = (10,10)Stage 1

Stage 2 P1 = (11,10.5)

P̄1 = (11,10.5)

P2 = (9,9.5)

P̄2 = (8.5,9.25)

(b) Two-Stage Scenario Tree

Figure 1: Example scenario trees, S = N = J = 2.

Consider again the framework introduced in (1). Assume that ξ has a finite number of
scenarios ξ1, ...,ξN with corresponding probability masses p1, ..., pN . Observe that, starting
from the initial price level P, the scenarios of ξ can be directly utilized to construct the future
price scenarios. That is, Pn, and consequently P̄n, can be written as a function of ξn, as for any
arbitrary n = 1, ..., N, we can write Pn(ξn)= P⊙ξn, where ⊙ is the Hadamard product (element-
wise multiplication). This implies that pn is also the probability of reaching scenario n in the
scenario tree. We can use this result to work out the expectations in (1) to obtain the following
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model formulation corresponding to the two-stage scenario tree:

min
w

N∑
n=1

pnρ(w,ξn) (2)

s.t.
N∑

n=1
pnr(w,ξn)≥µ

w ∈ F.

As we will discover, this modified framework allows for the integration of the conceptualization
of future stock prices within a two-stage scenario tree into the general PSP framework intro-
duced in (1). The next step is to develop the risk- and return functions, as well as to introduce
additional constraints to adapt the model to the specifics of our problem, such as minimum
position size- and cardinality constraints.

2.3 Risk Function

We will start by developing the risk function ρ(w,ξ). As touched on in the introduction,
the risk measure we consider is CVaR. In words, the α% CVaR denotes the expected portfolio
return, provided that the portfolio return falls within the most unfavorable (1−α)% quantile of
the overall portfolio return distribution (0<α< 1). Figure 2 visually depicts VaR and CVaR. In
practical situations, portfolio managers typically strive to minimize the probability of encoun-
tering substantial losses. As evident from Figure 2, VaR falls short in addressing this concern,
as it focuses solely on the worst-case scenario at a specified confidence level. In contrast, CVaR
takes into account the entire distribution of losses beyond the VaR threshold. This charac-
teristic establishes CVaR as a more robust and reliable risk metric for portfolio optimization
(Stoyanov, Rachev, and Fabozzi, 2013).

Figure 2: Example portfolio return distribution, 95 % VaR (red) & 95% CVaR (black).

In the context of portfolio optimization, adopting CVaR is not just a practical enhancement
over VaR; it also addresses optimization-related shortcomings associated with VaR. VaR is
not a coherent risk measure in the definition of Artzner, Delbaen, Eber, and Heath (1999),
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implying it fails to adequately reward the benefits of portfolio diversification. Moreover, of
particular significance to this study is that when considering discrete portfolio scenarios, VaR
behaves as a non-smooth and non-convex function of the portfolio weights (Rockafellar and
Uryasev, 2002). This attribute renders the application of VaR impractical within our modeling
approach. In contrast to these deficiencies observed with the VaR risk measure, Rockafellar
and Uryasev (2002) introduce a definition for CVaR applicable to general distributions, that is,
both continuous and discrete distributions. In this definition, they demonstrate that CVaR is a
continuous and convex function of the portfolio weights. Moreover, they establish that we can
formulate a CVaR optimization model as a linear program.

For simplicity, let us assume that the portfolio return function r(w,ξ) can be separated in a
function for profits and a function for losses. Assume that portfolio losses are generated by the
function l(w,ξ) : [0,1]S×RS →R. write p(ξ) for the complete underlying probability distribution
of ξ. Rockafellar and Uryasev (2000) formally define the α%-CVaR as

CVaRα(w) := 1
1−α

∫
l(w,ξ)≥VaRα(w,ξ)

l(w,ξ)p(ξ)dξ. (3)

To deal with the α%-VaR in the integral, a new function is introduced:

Gα(w,γ)= γ+ 1
1−α

∫
l(w,ξ)

(l(w,ξ)−γ)p(ξ)dξ. (4)

Rockafellar and Uryasev (2000) show that (4) is a convex function with respect to γ. Moreover,
they find that if the solution of the minimization of (4) is given by (w∗,γ∗), the optimal α%-
CVaR is given by Gα(w∗,γ∗) and the corresponding α%-VaR is given by γ∗.

To demonstrate the usefulness of this result, recall the framework developed in (2). Suppose
we have generated N scenarios ξ1, ...,ξN . We can rewrite (4) as

Gα(w,γ)= γ+ 1
1−α

N∑
n=1

pn[l(w,ξn)−γ]+. (5)

To deal with the maximum function in (5), introduce the auxiliary variable zn such that zn ≥
l(w,ξn)−γ and zn ≥ 0, n = 1, ..., N. Then, to utilize CVaR as a risk measure in (2), we obtain

min
w, γ,

z1,...,zN

γ+ 1
1−α

N∑
n=1

pnzn (6)

s.t.
N∑

n=1
pnr(w,ξn)≥µ

zn ≥ l(w,ξn)−γ, n = 1, ..., N

zn ≥ 0, n = 1, ..., N

γ ∈R
w ∈ F.

Observe that we have effectively integrated a linear expression for ρ(w,ξ) in (2), such that ρ(·)
now denotes the portfolio CVaR.
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2.4 Return- & Loss Function

The next step involves deriving expressions for the return function r(w,ξ) and the loss
function l(w,ξ) in (6). Given our specific problem context and the inherent two-stage struc-
ture of the resulting model, we must first introduce additional notation. Consider again the
notation introduced in Section 2.2. Similar to the first-stage portfolio weight decision vector
w, let w0 = (w0

1, ...,w0
S) ∈ [0,1]S represent the initial portfolio weight vector. This implies that

we allow for the possibility that the company may already manage a portfolio. For n = 1, ..., N,
let wn = (wn

1 , ...,wn
S) ∈ [0,1]S the portfolio weight vector after the described rebalancing proce-

dure in scenario n. Let w̃0, w̃, w̃n ∈ RS+ represent the portfolio holding vectors associated with
weight vectors w0, w, and wn, respectively. For instance, for any arbitrary stock i = 1, ...,S,

w0
i =

w̃0
i∑S

i=1 w̃0
i
. Write C ∈ R+ for the initial available capital intended for investment in the port-

folio. It is straightforward to see that V 0 = C +∑S
i=1 w̃0

i Pi, where V 0 is the initial portfolio
wealth. Similarly, given that we assume that all available capital is invested in the portfolio in
the first stage, we have V n =∑S

i=1 w̃n
i P̄n

i (ξn), where V n is the expected portfolio wealth in sce-
nario n. The expected portfolio return in scenario n is then given by Rn = V n

V 0 −1. To model the
dynamics between w̃0, w̃ and w̃n, let b = (b1, ...,bS) ∈ RS+ and s = (s1, ..., sS) ∈ RS+ vectors where
each element signifies the quantity of the respective stock bought and sold, respectively. Like-
wise, define bn, sn ∈RS+, representing the number of stocks purchased and sold, respectively, in
scenario n. Let Φ= (w̃, γ, b, s, w̃1, ..., w̃n, b1, ...,bN , s1, ..., sN , z1, ..., zN , V 1, ...,V N , R1, ...,RN )
be the decision vector with the newly introduced decision variables. Note that the portfolio
weight vectors are dropped from the decision vector, as they can be directly computed from the
portfolio holding vectors. We can extend (6) to obtain

min
Φ

γ+ 1
1−α

N∑
n=1

pnzn (7)

s.t. w̃i = w̃0
i +bi − si, i = 1, ...,S

w̃n
i = w̃i +bn

i − sn
i , i = 1, ...,S, n = 1, ..., N

C+
S∑

i=1
siPi =

S∑
i=1

biPi

S∑
i=1

sn
i Pn

i (ξn)=
S∑

i=1
bn

i Pn
i (ξn), n = 1, ..., N

V n =
S∑

i=1
w̃n

i P̄n
i (ξn), n = 1, ..., N

Rn = V n

V 0 −1, n = 1, ..., N

N∑
n=1

pnRn ≥µ

zn ≥−Rn −γ, n = 1, ..., N

zn ≥ 0, n = 1, ..., N

γ ∈R
w̃ ∈ F

w̃n ∈ F, n = 1, ..., N.
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We find that, in our model, the return function is described by Rn and its corresponding dy-
namics and the loss function is described by −Rn and its corresponding dynamics. Compared to
(6), the first six constraints are new in this model formulation. The first- and second constraint
are referred to as the first- and second-stage stock balance conditions, respectively. These con-
ditions ensure that the position size in a stock at the end of a stage equals the position size of
that stock at the initiation of a stage, adjusted for stocks sold and purchased during the stage.
The third- and fourth constraint are the first- and second-stage cash flow constraints, respec-
tively. In the first-stage, all initially available capital and proceeds from stock sales is allocated
to the portfolio. In the second stage, the income generated from selling assets is directly uti-
lized to purchase new stocks. It is worth noting that by introducing additional variables to
represent the capital position in the second stage, the assumption that all available capital
must be invested can be easily modified to accommodate a capital position in the second stage
as well. However, for the specific empirical experiments conducted in this study, we choose not
to make this adjustment. The fifth- and sixth constraints have been detailed above.

The model in (7) adopts the structure of a two-stage SM. This implies that we have success-
fully illustrated the adaptation of the general PSP framework outlined in (1) to a two-stage SM
under the CVaR risk measure. We can proceed by further enhancing the two-stage SM through
the inclusion of additional practical constraints. Through this augmentation, we will discover
that the resulting model takes on the structure of a two-stage SMIM.

2.5 Two-Stage SMIM

We initiate this section by formally defining all notation used.
Sets:

S The set of available stocks, indexed by i = 1, ...,S.

User-specified parameters:

µ Minimum expected portfolio return
α Critical percentile for (C)VaR

Deterministic input data:

N Number of second-stage scenarios, indexed by n = 1, ..., N
C Initial available capital
w̃0

i Initial position in stock i
K Number of unique stocks to be held in the portfolio
w̃min Minimum position per unique stock to be held
Pi Initial price per unit of stock i

Scenario dependent data:

pn Probability of observing scenario n
ξn Stock returns in scenario n
Pn

i (ξn) Price per unit of stock i in scenario n in the second-stage
P̄n

i (ξn) Expected price per unit of stock i in scenario n in the third-stage
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Auxiliary variables:

zn Expected portfolio shortfall in excess of VaR in scenario n
γ VaR value
V n Expected portfolio wealth in scenario n
Rn Expected portfolio return in scenario n

First-stage decision variables:

bi Number of units of stock i purchased in stage 1
si Number of units of stock i sold in stage 1
w̃i Position size in stock i after transactions in stage 1
hi Equals 1 if we hold stock i in stage 1, 0 otherwise

Second-stage/recourse decision variables:

bn
i Number of units of stock i purchased in scenario n in stage 2

sn
i Number of units of stock i sold in scenario n in stage 2

w̃n
i Position size in stock i after transactions in stage 2 in scenario n

hn
i Equals 1 if we hold stock i in scenario n in stage 2, 0 otherwise

Extend the decision vector Φ introduced in the previous section with the newly introduced
decision variables hi ∈ {0,1} and h1

i , ...,hn
i ∈ {0,1} for i = 1, ...,S. Then, extending on (7), inspired

by the model in Cui et al. (2020) and Topaloglou et al. (2008), we define the following two-stage
SMIM:

Objective Function

min
Φ

γ+ 1
1−α

∑
n∈N

pnzn (8)

First-Stage Constraints

s.t. w̃i = w̃0
i +bi − si, i = 1, ...,S (9)

C+
S∑

i=1
siPi =

S∑
i=1

biPi (10)

S∑
i=1

hi = K (11)

w̃minhi ≤ w̃i, i = 1, ...,S (12)

w̃i ≤ Mhi, i = 1, ...,S (13)

hi ∈ {0,1}, i = 1, ...,S (14)

w̃i,bi, si ∈R+, i = 1, ...,S (15)

γ ∈R (16)

Second-Stage Constraints

w̃n
i = w̃i +bn

i − sn
i , i = 1, ...,S, n = 1, ..., N (17)

S∑
i=1

sn
i Pn

i (ξn)=
S∑

i=1
bn

i Pn
i (ξn), n = 1, ..., N (18)
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S∑
i=1

hn
i = K , n = 1, ..., N (19)

w̃minhn
i ≤ w̃n

i , i = 1, ...,S, n = 1, ..., N (20)

w̃n
i ≤ Mhn

i , i = 1, ...,S, n = 1, ..., N (21)

V n =
S∑

i=1
P̄n

i (ξn)w̃n
i , n = 1, ..., N (22)

Rn = V n

V 0 −1, n = 1, ..., N (23)

zn ≥−Rn −γ, n = 1, ..., N (24)

zn ≥ 0, n = 1, ..., N (25)∑
n∈N

pnRn ≥µ (26)

hn
i ∈ {0,1}, i = 1, ...,S, n = 1, ..., N (27)

w̃n
i ,bn

i , sn
i ∈R+, i = 1, ...,S, n = 1, ..., N (28)

zn ∈R+, n = 1, ..., N. (29)

Let us focus on the constraints not covered in the previous sections. Constraints (11) and (19)
are the first- and second-stage cardinality constraints, respectively. These constraints restrict
the number of unique stock holdings in a stage to a fixed value K ≤ S. In (12) and (20), a
minimum position size per unique stock is ensured in the first- and second-stage, respectively.
For M sufficiently large, constraints (13) and (21) are linear expressions that ensure that, for
i = 1, ...,S and n = 1, ..., N, hi and hn

i behave as defined in the notation in both the first- and
second-stage, respectively. Even though it could be argued that the first- and second-stage
holding, buying and selling variables in respectively (15) and (28) should take on strictly inte-
ger values, we have chosen to adopt a different approach in line with the perspective outlined
by Woodside-Oriakhi, Lucas, and Beasley (2013). Specifically, we will treat these variables as
continuous due to the assumption that the invested sums are of significant magnitude. Be-
yond this rational argument, one should recognize that without assuming continuity for these
variables, we would face a substantial and challenging increase in computational complexity,
as highlighted by He and Qu (2014). We believe this is beyond the scope of our research and
warrants further research. We do restrict the decision variables in (14) and (27) to the binary
set. This implies that by imposing cardinality constraints as well as minimum position size
constraints, the two-stage SM with continuous recourse decision variables in (7) evolves into a
two-stage SMIM.

2.6 Three-Stage SMIM

Literature exists on SMs that address the PSP in a multi-stage setting, see e.g. Topaloglou
et al. (2008). However, to our knowledge, current research on modeling the PSP using a SMIM
is primarily limited to two-stage formulations. The challenges associated with solving two-
stage SMIMs are acknowledged in the literature, making the prospect of addressing similar
problems in multi-stage SMIMs even more challenging. To illustrate the complexity, consider
a two-stage SMIM with 5000 scenarios, corresponding to a scenario tree of size 5000. Intro-
ducing an additional third-stage, with only 2 scenarios for each second-stage scenario, causes
the three-stage SMIM to grow to 5000 ·2 = 10000 scenarios. For continuous SMs, this would

15



not directly pose problems, as the convexity in the model can still be exploited to derive solu-
tions efficiently. However, as one can imagine, for SMIMs, given the increase in the number
of associated NP-hard integer programs when we include just one additional stage, we reach a
point where the model becomes practically unsolvable with modern-day technology. Despite the
challenges, we find it valuable to introduce a three-stage SMIM for the PSP. Our reasoning is
straightforward: existing literature demonstrates favorable outcomes in portfolio performance
derived from two-stage SMs and SMIMs addressing the PSP. The introduction of just a single
additional stage already enhances the capacity of the model to quantify future uncertainty.
Consequently, we anticipate that portfolios derived from the three-stage SMIM should demon-
strate superior performance compared to those derived from the two-stage SMIM.

Consider the three-stage scenario tree in Figure 1a. For n = 1, ..., N and for j = 1, ..., J, write
p(n, j) for the probability of reaching scenario (n, j) in the third-stage. Similarly, write R(n, j),
V (n, j) and z(n, j) for the return, wealth and portfolio shortfall in excess of VaR in scenario (n, j).
Modify the decision vector Φ by dropping Rn, V n and zn and replace these for R(n, j), V (n, j) and
z(n, j). Refer to the new decision vector as Φ̃. We define the three-stage SMIM as:

Objective Function

min
Φ̃

γ+ 1
1−α

N∑
n=1

J∑
j=1

p(n, j)z(n, j) (30)

First-Stage Constraints

s.t. w̃i = w̃0
i +bi − si, i = 1, ...,S (31)

C+
S∑

i=1
siPi =

S∑
i=1

biPi (32)

S∑
i=1

hi = K (33)

w̃minhi ≤ w̃i, i = 1, ...,S (34)

w̃i ≤ Mhi, i = 1, ...,S (35)

hi ∈ {0,1}, i = 1, ...,S (36)

w̃i,bi, si ∈R+, i = 1, ...,S (37)

γ ∈R (38)

Second-Stage Constraints

w̃n
i = w̃i +bn

i − sn
i , i = 1, ...,S, n = 1, ..., N (39)

S∑
i=1

sn
i Pn

i =
S∑

i=1
bn

i Pn
i , n = 1, ..., N (40)

S∑
i=1

hn
i = K , n = 1, ..., N (41)

w̃minhn
i ≤ w̃n

i , i = 1, ...,S, n = 1, ..., N (42)

w̃n
i ≤ Mhn

i , i = 1, ...,S, n = 1, ..., N (43)

hn
i ∈ {0,1}, i = 1, ...,S, n = 1, ..., N (44)

w̃n
i ,bn

i , sn
i ∈R+, i = 1, ...,S, n = 1, ..., N (45)

Third-Stage Constraints
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V (n. j) =
S∑

i=1
P(n, j)

i w̃n
i , n = 1, ..., N, j = 1, ..., J (46)

R(n, j) = V (n, j)

V 0 −1, n = 1, ..., N, j = 1, ..., J (47)

z(n, j) ≥−R(n, j) −γ, n = 1, ..., N, j = 1, ..., J (48)

z(n, j) ≥ 0, n = 1, ..., N, j = 1, ..., J (49)∑
n∈N

∑
j∈J

p(n, j)R(n, j) ≥µ (50)

z(n, j) ∈R+, n = 1, ..., N, j = 1, ..., J. (51)

The overall structure and constraints of the three-stage SMIM closely resemble those of the
two-stage SMIM discussed in the preceding section. The key distinction lies in the prices
at which the portfolio wealth, return, and CVaR are evaluated. In the previous section, we
referred to Rn, V n, and zn as the expected portfolio return, wealth, and shortfall in excess
of VaR in scenario n, respectively. This nomenclature was employed because we utilized the
average price vector P̄n, allowing us to formulate the PSP in the problem setting as a two-stage
SMIM. If we shift our focus to the individual third-stage scenario prices P(n, j) instead of the
average third-stage price vector P̄n, the portfolio wealth, return, and CVaR are evaluated at the
true individual third-stage prices. Consequently, we no longer refer to them as their expected
values. We hypothesize that, by considering each third-stage return scenario emanating from a
given scenario n individually, as opposed to relying on the average third-stage return scenario,
the three-stage SMIM should lead to an improved quality of derived portfolio solutions.

3 Solution Methodology

In this section, we delve into the methodology employed for solving the introduced two-
stage- and three-stage SMIMs discussed in the previous section. We commence by exploring
the most direct approach to solving such models and underscore the limitations associated
with this method. Subsequently, we demonstrate that conventional techniques designed to
address these limitations are not directly applicable to our specific SMIMs. To overcome these
challenges, we propose a novel decomposition-based solution methodology.

3.1 MILP

Consider the two-stage- and three-stage SMIM introduced in the previous section. Com-
pletely formulating the objective function and constraints for all scenarios reveals that both
SMIMs adopt the format of a large mixed-integer linear program (MILP). MILPs are known to
be NP-complete, making them challenging to solve. Typically, efficient MILP-solving software
is employed to tackle such problems, leveraging established branch-and-bound algorithms. De-
spite continuous advancements in solution times achieved by these software tools, depending
on the problem setting, MILPs can become excessively large depending on the problem setting,
making it impractical to obtain solutions from such software. MILPs deducted from two-stage
SMIMs, let alone three-stage SMIMs, typically become very large, with the program size grow-
ing significantly as the number of considered scenarios increases. To address these challenges,
existing literature traditionally leverages the observation that many SMIMs adhere to a spe-
cific standard structure, which we refer to as the class of linear mixed-integer recourse (MIR)
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models. Appendix A provides a concise introduction to this class of models.
Assume that, for now, we relax the minimum expected return constraint (26). Then, the

two-stage SMIM can also be formulated as a two-stage MIR model. That is, following the
notation introduced in Appendix A, we can write the two-stage SMIM as

min
x∈X

{c⊤x+Q(x) : Ax ≤ b}, (52)

with
Q(x)= ∑

n∈N
pnvn(x) (53)

and
vn(x) := min

yn∈Y
{q⊤

n yn : Wn yn ≥ hn −Tnx}. (54)

To understand this, note that the variable x represents the first-stage decision vector, i.e. ∀i =
1, ...,S, x = (γ, hi, wi, bi, si) and X = R× {0,1}S ×R3S+ . Examining the objective function (8),
we observe that the first-stage cost vector c is defined as c = (1,0, ...,0). The matrix A and the
right-hand side vector b in (52) can be straightforwardly constructed to represent the first-
stage constraints. The expected-value function Q(x) calculates the weighted sum of the second-
stage value functions vn(x), ∀n = 1, ..., N. These second-stage value functions correspond to the
objective values of individual second-stage minimization problems associated with scenario
n. To understand this, consider (54) and fix a scenario n. Then, yn represents the second-
stage decision vector, i.e. ∀i ∈ S, yn = (zn, Rn, V n, hn

i , wn
i , bn

i , sn
i ) and Y = R+ × {0,1}S ×

R3S. Examining the objective function (8), the second-stage cost vector qn is given by qn =
( 1

1−α ,0, ...,0). Appropriately constructing the recourse matrix Wn and technology matrix Tn,
along with the right-hand side vector hn, they represent the second-stage constraints of the
two-stage SMIM. The structure of the associated MILP is given by

min
x∈X ,y1,..,yN∈Y

c⊤x+ q⊤
1 y1 + q⊤

2 y2 +·· ·+ q⊤
N yN (55)

Ax ≤ b

T1x+W1 y1 ≥ h1

T2x +W2 y2 ≥ h2

...
. . .

...

TN x +WN yN ≥ hN .

The block-diagonal structure of this MILP, commonly referred to as the L-shaped structure,
naturally lends itself to a classical decomposition technique known as Benders decomposi-
tion (Benders, 1962). This approach involves dividing the problem into two subsets: a master
problem, which focuses on the first-stage variables, and a set of N second-stage subproblems.
The subproblems are solved for the second-stage variables for a given first-stage solution ob-
tained from the master problem. Algorithms utilizing Benders decomposition often exhibit
significantly reduced computation times, as typically the master problem and subproblems are
considerably smaller compared to the non-partitioned original problem. Moreover, the sub-
problems can be parallelly solved, further enhancing computational efficiency. The L-shaped
method (van Slyke and Wets, 1969) is one of the most well-known algorithms that exploits this
decomposition.
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In an ideal situation, our model exhibits a similar structure such that we can make use of
these efficient solution algorithms. However, without relaxing the minimum expected return
constraint (26), we observe a deviation from this structure. This is evident when considering
that the constraint encompasses the portfolio returns across all N scenarios. Consequently, the
structure of the associated MILP, with this constraint included, takes on a form of

min
x∈X ,y1,..,yN∈Y

c⊤x+ q⊤
1 y1 + q⊤

2 y2 +·· ·+ q⊤
N yN (56)

Ax ≥ b

T1x+W1 y1 ≥ h1

T2x +W2 y2 ≥ h2

...
. . .

...

TN x +WN yN ≥ hN

e⊤2 y1 + e⊤2 y2 + . . . + e⊤2 yN ≥µ,

where e2 is the appropriately-sized standard unit vector, i.e. e2 = (0,1,0, ...,0). This somewhat
atypical structure does not allow for direct application of decomposition techniques such as
Benders decomposition.

Studies examining SMs and SMIMs for the PSP similar to ours acknowledge this atypical
structure and resort to alternative solving approaches. While some studies, like (Topaloglou
et al., 2008), choose to solve the complete MILP using MILP-solving software, potentially incur-
ring less efficient computation times, others opt for obtaining solutions through computational
algorithms from computer science disciplines, as seen in works such as (He and Qu, 2014) and
(Cui et al., 2020). Notably, a clear advantage of these algorithms is their significantly faster
computation times. However, a disadvantage is that these algorithms provide approximate
solutions, whereas solutions derived from solving the associated MILPs offer exact solutions.
We contend that, particularly in the context of portfolio selection, where typically substantial
amounts of capital are involved, the importance of exact solutions surpasses the advantages of
faster computation times. Therefore, aligning with the approach in Topaloglou et al. (2008), all
presented solutions of the SMIMs are obtained by solving the associated complete MILPs. The
MILPs are implemented in the Python programming language and solved using the Gurobi
optimization software (Gurobi Optimization, LLC, 2023).

We do want to address the gap in literature on obtaining exact solutions to SMIMs similar
to ours in a more efficient manner. Hence, while not employed in this study, we now put forth
a novel decomposition-based algorithm designed to efficiently solve the MILP of the two-stage
SMIM as presented in (56). A notable advantage of our proposed algorithm over the computer
science-related algorithms explored thus far is its capability to provide exact solutions rather
than approximate ones. Numerical results obtained using this algorithm will be presented in
a later work.

3.2 Decomposition Algorithm

Consider an arbitrary two-stage continuous stochastic program of the form

min
x∈X

{c⊤x :
N∑

n=1
pnvn(x)≤ η}, (57)
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where
vn(x)=min

y∈Y
{q⊤

n y : Wn y≥ hn −Tnx} (58)

and η is a fixed parameter. Henceforth, we designate constraints like the one on the right-
hand side in (57) as global second-stage constraints, as they articulate a connection between
second-stage variables across multiple scenarios. As elaborated on in our examination of the
MILP associated with the two-stage SMIM under consideration, the minimum expected re-
turn constraint exemplifies a global second-stage constraint. These global second-stage con-
straints introduce a violation of the standard MILP structure used in existing decomposition
algorithms. Consequently, in this section, we propose a decomposition algorithm specific for
such constraints. The idea is to apply this algorithm specifically to address the minimum ex-
pected return constraint. We can then eliminate the constraint from the MILP. Subsequently,
we can leverage established decomposition algorithms to handle the remaining MILP, which,
as demonstrated earlier, adheres to the standard MILP structure compatible with existing de-
composition algorithms.

By linear programming duality theory, (58) can be equivalently written as

vn(x)=max
λ≥0

{λ⊤
n (hn −Tnx) :λ⊤

n Wn ≤ q⊤
n }, (59)

where λn is the vector of dual variables in scenario n. The right-hand side of (59) is a polyhedral
set. Then, by the Fundamental Theorem of Linear Programming, which tells us that if an
optimal solution exists, it is guaranteed to occur at an extreme point, we can rewrite (59) as

vn(x)= max
k=1,...,Kn

(λk
n)⊤(hn −Tnx), (60)

where λk
n is the kth extreme point in scenario n. Hence, the minimization problem (57) is

equivalent to

min
x∈X

ψn∈R ∀n=1,...,N

{c⊤x :
N∑

n=1
pnψn ≤ η, ψn ≥ max

k=1,...,Kn
(λk

n)⊤(hn −Tnx) ∀n = 1, ..., N}. (61)

To deal with the maximum function in (61), we can rewrite to

min
x∈X

ψn∈R ∀n=1,...,N

{c⊤x :
N∑

n=1
pnψn ≤ η, ψn ≥ (λk

n)⊤(hn −Tnx) ∀k = 1, ...,Kn ∀n = 1, ..., N}. (62)

The reformulation of the original two-stage stochastic program in (57) to (62) allows for a
straightforward decomposition algorithm.

The algorithm is presented in Algorithm 1. In the initialization phase, the master problem
is defined and the iteration counter is started. In iteration t in the iteration phase, we first
solve the master problem, yielding solutions xt and ψt

n ∀n = 1, ..., N. In line 5, note that the
maximization term is equal to vn(xt). We check if for the obtained solutions xt and ψt

n (61)
holds. If this is true, from above, we know that xt and ψt

n are optimal: the algorithm stops. If
this does not hold, ∀n = 1, ., , , N, we add the violating constraints ψn ≥ (λkt

n )⊤(hn −Tnx), where
λkt

n is the solution of vn(xt) in line 5. We update the iteration counter to t = t+ 1 and the
iteration phase repeats. In the worst case, the algorithm as presented in Algorithm 1 will re-
sult in a master problem as large as the original two-stage stochastic program. Consequently,
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from a computational standpoint, employing the proposed algorithm is consistently advanta-
geous compared to solving the entire stochastic program as a single extensive linear program.
Additionally, we may contemplate introducing an acceptable error parameter ϵ > 0 in line 5,
modifying the if-statement to verify whether ψt

n+ϵ≥maxk=1,...,K t
n
(λk

n)⊤(hn−Tnxt) ∀n = 1, ..., N.
This would speed up the algorithm even more.

Algorithm 1 Global Second-Stage Constraints Decomposition Algorithm
Initialization Phase:

1: Define Master Problem (MP):

min
x∈X

ψn∈R ∀n=1,...,N

{c⊤x :
N∑

n=1
pnψn ≤ η}

2: Set t = 1

Iteration Phase:
3: while true do
4: Solve the MP, yielding solutions xt and ψt

n ∀n = 1, ..., N.
5: if ψt

n ≥maxk=1,...,K t
n
(λk

n)⊤(hn −Tnxt) ∀n = 1, ..., N then
6: xt is optimal. Break loop.
7: else
8: Add violating constraints ψn ≥ (λkt

n )⊤(hn −Tnx) to the master problem ∀n = 1, ..., N.
9: Set t = t+1

10: end if
11: end while

Now, consider the minimum expected return constraint (26) in the two-stage SMIM. Ob-
serve that we can equivalently write

N∑
n=1

−pnRn ≤−µ. (63)

Observe that the value of Rn can also be obtained by solving

v̂n(x)=max
Rn

{Rn : Wn y≥ hn −Tnx}=−min
Rn

{−Rn : Wn y≥ hn −Tnx}, (64)

where Wn, Tn and hn are defined as in Section 3.1, i.e. such that they correspond to the second-
stage minimization problem in scenario n in the two-stage SMIM without minimum expected
return constraint. We thus can write the minimum expected return constraint as

N∑
n=1

−pn v̂n ≤−µ, (65)

that is, the minimum expected return constraint can be written in the format used in the
algorithm. We can now write the complete two-stage SMIM as

min
x∈X

{c⊤x+Q(x) : Ax ≤ b,
N∑

n=1
−pn v̂n(x)≤µ}, (66)
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with the vectors, matrices and functions defined as above. Algorithm 1 can now be applied
to deal with the minimum expected return constraint, such that the remaining standard-
structured associated MILP can be solved using established (integer) decomposition techniques.
This is something we will demonstrate in a later work.

4 Scenario Modelling

This section covers the methods utilized in modeling the uncertain market return scenarios
introduced in Section 2. Given the general structure of scenario trees, where the third-stage
scenarios depend on the second-stage scenarios they branched from,we distinctly outline the
methods for the second-stage scenarios and those for the third-stage scenarios. We initiate this
section by discussing the methodology for the second-stage scenarios, followed by a discussion
on the methods used for the third-stage scenarios.

4.1 Second-Stage Scenarios

It is well known that modelling stock returns is challenging. Typically, returns display cor-
relations, and, as depicted in Figure 3, their historical distribution often demonstrates asym-
metries and fat tails. Consequently, modeling them in accordance with a conventional distri-
bution, such as a normal distribution, may not be suitable. The complexity intensifies when
turning attention to modeling portfolio returns. In this context, the objective is to establish
a multivariate distribution for asset prices. Multivariate return series typically demonstrate
dynamic non-linear cross-correlation for contemporaneous returns (McNeil et al., 2015). More-
over, as is evident from Figure 3, the marginal return series of the individual stocks differ,
introducing an additional layer of complexity to the modeling process. However, particularly
when concerned with controlling downside risk in the tail of the portfolio return distribution,
effectively capturing observed multivariate return moments, such as skewness and excess kur-
tosis in the distribution of asset prices, becomes of vital importance (Topaloglou et al., 2008).
Additionally, considering that periods characterized by high volatility and extreme returns are
often directly associated with increased cross-correlation, significantly shaping the tail of the
return distribution (Sandoval and De Paula Franca, 2012), it becomes essential to employ an
adequate modeling approach.

Evidently, portfolio solutions generated by risk-controlling optimization processes are mas-
sively dependent on the scenarios (Quaranta and Zaffaroni, 2008). To overcome modelling
difficulties, Topaloglou et al. (2008) and He and Qu (2014) utilize the moment-matching sce-
nario generation procedure for stock returns as proposed in Høyland and Wallace (2001) and
Høyland, Kaut, and Wallace (2003) in their two-stage SM and SMIM, respectively. The idea
of this method is that we generate scenario sets such that key statistics of in this case the
stock returns match specified target values closely. In this particular case, we would consider
the first four moments of the stock return distributions as key statistics. The specified target
values for these statistics are derived from historical data on the stock returns. Even though
the moment-matching algorithm offers a straightforward method for generating a multivari-
ate distribution for stock returns and, consequently, prices, we are a bit conservative towards
this approach. The generated distribution not only heavily relies on the quality of the initial
scenario moments but also lacks a provided convergence proof, as emphasized in Mehrotra and
Papp (2013). In Cui et al. (2020), the copula method introduced by Kaut and Wallace (2011) is
employed. Not only do they find that utilizing the scenarios generated from this copula method
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in their model yield portfolio solutions that can adequately track a benchmark index, but also
that the obtained portfolio solutions exhibit stability across different samples of generated sce-
narios. Encouraged by these findings, we also employ a copula-based method for generating
second-stage stock return scenarios. Different from the method introduced in Kaut and Wal-
lace (2011), this copula-based method is a parametric approach and makes use of the copula
methodology covered in McNeil et al. (2015).

Figure 3: Daily returns of 9 large cap stocks with overlaid normal distribution curve,
2013-2019.

The term copula is introduced in Sklar (1959) and is described as a function that links a
multivariate distribution to its one-dimensional marginal distributions. Sklar’s theorem as-
serts that the joint distribution of multiple variables can be expressed by combining their
individual marginal distribution functions with a copula that characterizes the dependence
structure among these variables. Consider the random vector X = (X1, ..., Xd) and assume the
marginal cumulative distribution functions (CDFs) Fi(x) = Pr(X i ≤ x) are continuous (1 ≤ i ≤
d). By the probability integral transform, the marginals of the random vector

(U1, ...,Ud)= (F1(X1), ...,Fd(Xd))

are distributed uniformly on [0,1]. The copula C : [0,1]d → [0,1] of (X1, ..., Xd) is defined as the
joint CDF of U = (U1, ...,Ud):

C(u1, ...,ud)= Pr[U1 ≤ u1, ...,Ud ≤ ud].

In this formulation, C contains all information on the dependence structure between the sep-
arate variables in X whereas the information on the marginal distributions of X i is in Fi
(1≤ i ≤ d). We can reverse these steps to generate pseudo-random scenarios from a given mul-
tivariate probability distribution. That is, given samples Û = (û1, ..., ûd) generated from the
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copula function, we can construct a scenario X̂ = (x̂1, ..., x̂d) as

(x̂1, ..., x̂d)= (F−1
1 (û1), ...,F−1

d (ûd)).

By utilizing copulas to simulate joint stock return scenarios, we can adeptly represent the
interdependence among individual stock returns without altering their individual marginal
distributions. This approach is particularly advantageous as it facilitates adequately modeling
the dynamic, non-linear cross-correlations within the multivariate series using copulas, while
simultaneously accommodating variations in the marginal distributions of individual stocks.
This approach enhances the realism of scenarios compared to modeling the joint distribution
as, for instance, a multivariate normal distribution.

(a) Marginal Densities Microsoft Returns (b) Marginal Densities Apple Returns

(c) Bivariate Density, observed (green) &
bivariate normal (red)

(d) Bivariate density, observed (green) & T
copula (blue)

Figure 4: Marginal and bivariate densities Apple stock & Microsoft stock returns: observed &
1000 scenarios generated from multivariate normal distribution and T copula (2013-2019).

The copula-based method we employ is based on a bottom-up approach. We fit multivariate
return data to four widely recognized parametric copula models: Gaussian, T, Clayton, and
Gumbel (see Nelsen (1998) for an overview and fitting procedure). Consequently, the goodness-
of-fit is assessed based on criteria such as (log) likelihood and Bayesian Information Criterion
(BIC). Additionally, we employ the two-sided Kolmogorov-Smirnov (KS) test, which examines
the null hypothesis that the data is drawn from the same distribution. This methodology is
in line with the recommendations provided in Patton (2012). In Figure 4, we showcase the
effectiveness of our approach through an illustrative example, focusing on modeling the bivari-
ate distribution of stock returns for Apple and Microsoft. The historical returns, as depicted,
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suggest a somewhat leptokurtic distribution characterized by heavy tails and positive kurto-
sis—typical traits of stock returns (McNeil et al., 2015). Through the bottom-up approach, the
T Copula emerges as the best-fitting model for the return data. This selection is substantiated
by both marginal and bivariate density plots. Notably, the T Copula significantly improves
the distribution fit compared to a simple normal distribution approach, as evident in both the
marginal and bivariate density plots.

This method has two major advantages over the approach presented in Kaut and Wallace
(2011). Firstly, the scenario generation process is remarkably straightforward, eliminating the
need for users to write algorithmic code. This simplicity allows for easy implementation in
various statistical software applications. Secondly, the use of parametric copulas establishes
a precise and well-defined mathematical framework, enhancing practicality across various ap-
plications. This is facilitated by the straightforward process of parameter estimation and the
ease of interpreting results associated with this approach.

4.2 Third-Stage Scenarios

To model the distribution of the third-stage scenarios, a different approach is utilized. In
an ideal situation, we would like the third-stage return scenarios to be predictions conditional
on the second-stage return scenarios. However, as emphasized in the well-known paper on
the efficient-market theory by Fama (1970), stock markets are efficient and predicting short-
term stock price movements is impossible. The prevailing literature on SMs for the PSP also
acknowledges this result, leading to the adoption of more time-efficient and simplified methods
for modeling third-stage scenarios. Furthermore, given that the existing literature commonly
employs a unified approach of computing the expected third-stage prices rather than working
with the individual third-stage prices, one could argue that the quality of third-stage scenarios
is of less significance compared to that of the second-stage scenarios.

In Najafi and Mushakhian (2015), third-stage scenarios are modeled as equiprobable bull
and bear cases, where returns either shift up or down by multiplying a random parameter
generated from a standard uniform distribution with the observed stock return variance and
adding this to the average return in the second-stage scenario. In Topaloglou et al. (2008),
the third-stage return scenarios are modeled by iteratively incorporating previously moment-
matched generated scenarios at each stage. Cui et al. (2020) adopt a method where the third-
stage return scenarios are determined by multiplying the preceding second-stage scenarios
with a random parameter drawn from a uniform distribution within the interval [0.9,1.1]. Our
approach is similar to this method.

For each scenario n ∈ N, we generate J parameters λ(n, j) ∼ U (−0.01,0.01) (1 ≤ j ≤ J),
with U the uniform distribution. These parameters are then used to construct third-stage
prices P(n, j)

i (ξn) = Pn
i (ξn)(1+λ(n, j)), i = 1, ...,S. This method is similar to the methods in Na-

jafi and Mushakhian (2015) and Cui et al. (2020). Formally, for all n = 1, ..., N, write λn =
(λ(n,1), ...,λ(n,J)). The Law of Large Numbers informs us that E[λn] = 0 as J → ∞. Conse-
quently, for the two-stage SMIM in Section 2.5, we have that P̄n → Pn as J → ∞. This ob-
servation underscores the earlier point in this section that, within the unified framework of
computing expected third-stage scenarios in the existing literature, the quality of these scenar-
ios may be of less significance than that of second-stage scenarios. This methodology introduces
an intriguing dimension to the study, particularly in light of the three-stage SMIM presented
in Section 2.6, which evaluates portfolio returns at the individual third-stage scenarios. The
potential divergence in portfolio solutions between the two models under identical third-stage
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scenarios could raise the argument for exploring enhanced methods for third-stage scenario
generation in future research.

5 Data

The methodology developed for both the models and scenarios can now be merged to derive
portfolio solutions. We will conduct an analysis on the portfolio solutions and scenario quality
by deriving portfolio solutions for the Dow Jones Industrial Average (DJI) index. For this, we
require return data for both the DJI index and the individual stocks constituting this index.
Data is gathered from Yahoo Finance1 and imported for analysis utilizing the quantmod-R
package (Ryan, Ulrich, Smith, Thielen, Teetor, and Bronder, 2023).

The DJI, or Dow Jones Industrial Average, is a stock market index comprising 30 prominent
large-cap companies listed on the American stock market. The index employs a price-weighted
methodology, which implies that, in a simplified scenario, a stock with a price of $100 would
carry ten times more weight in the DJI than a stock priced at $10. We opted for the DJI index
due to its extensive data availability and the consistency in its holdings. By consistency, we
refer to the fact that the composition of the DJI remains relatively constant over time, expe-
riencing infrequent changes. This is in contrast to other indices, such as the S&P 500, which
undergoes more frequent alterations in its constituent stocks. The stability in the composition
of the DJI makes it a more convenient benchmark index for conducting assessments and analy-
ses, providing a steady and consistent foundation for evaluation compared to indices with more
dynamic compositions.

Figure 5: DJI weekly return volatility, 4-weeks rolling window,
2007-2021.

To justify a selection for the time-period considered in this study, we refer to the DJI return
volatility depicted in Figure 5. We aim for a period that is both relatively stable and sufficiently
large to provide ample information on the distribution moments of the returns. We decide
to select the period from 2010 to 2018 as data used for generating scenarios and the period
from 2018 to 2019 as data used for evaluation. This selection places our analysis between the
extreme volatility peaks caused by the global financial crisis in 2008 and the emergence of

1https://finance.yahoo.com/
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the COVID-19 pandemic in 2020. By excluding these extreme periods, we aim to mitigate the
potential impact of outliers on the shape of the return distributions. It is worth noting that the
chosen period does include some instances of higher volatility. However, this is not necessarily
detrimental; in fact, data from these periods can effectively capture extreme returns in the tail
of the return distributions, the importance of which is emphasized in Section 4.1.

In Table 1, we present the first four moments of the DJI returns Consistent with the anal-
ysis of stock return distributions outlined in Section 4.1, it is evident that the DJI return
distribution exhibits excess kurtosis. Furthermore, given the negative skewness observed, it
suggests that the excess kurtosis in the return distribution is mainly caused by a thicker left
tail associated with the losses. This underscores the significance of employing an appropriate
scenario generation procedure, as well as conducting an in-sample scenario analysis.

DJI
Mean 0
Standard deviation 0.009
Kurtosis 3.940
Skewness -0.380

Table 1: First four moments of DJI Returns, 2010-2018.

6 Scenarios

In this section, we implement the bottom-up copula selection approach to select the best-
fitting copula. The resulting copula is then employed to generate second-stage scenarios of
varying sizes. These scenario sets are subjected to both univariate and multivariate analyses
to ascertain an empirically supported scenario sample size. Finally, the selected copula and
scenario sample size are utilized to perform an in-sample analysis on the scenarios.

6.1 Copula Selection

We utilize the individual stock return data to fit the four proposed parametric copula mod-
els. The Log-Likelihood, AIC and BIC of the four fits is displayed in Table 2. For each fitted
parametric model, we generate 1000 random weekly return second-stage scenarios, such that
the two-side Kolmogorov-Smirnov (KS) test can be performed. Turning our attention to the
p-values of the KS test in the last column, we observe that only the Gumbel Copula rejects
the null hypothesis that the generated scenarios are from the same distribution as the original
data. Subsequently, we focus on the Gaussian-, T-, and Clayton copulas. By examining the
log-likelihood, AIC, and BIC, it becomes evident that the T copula emerges as the best-fitting
parametric copula model. Consequently, the T-copula is selected for generating second-stage
scenarios in the upcoming analyses.

6.2 Number of Scenarios

To justify a selection for the number of scenarios used, we consider the properties of differ-
ently sized scenario sets both from an univariate- and a multivariate point of view. We focus
primarily on the properties of the second-stage scenarios, given that the subsequent scenarios
are completely dependent on these scenarios, as shown in Section 4.2. For all second-stage
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Copula Log-Likelihood AIC BIC KS
Gaussian Copula 2467.17 -4932.35 -4928.20 0.64
T Copula 2745.09 -5486.17 -5477.87 0.42
Gumbel Copula 1863.49 -3724.99 -3720.84 0.01
Clayton Copula 1907.46 -3812.91 -3808.76 0.53

Table 2: Parametric opula goodness-of-fit statistics.

scenarios n = 1, ..., N, we set J = 10. We generate second-stage scenario sets from the fitted T
copula with sizes of 1000, 2000, 3000, 4000, and 5000. Consequently, for each scenario set, the
third-stage scenarios are generated in line with the first approach outlined in Section 4.2. To
ensure robustness, this entire process is iterated 100 times.

To evaluate the scenario sets from a univariate perspective, we initially treat the gener-
ated multivariate scenario sets as combinations of univariate stock return scenarios. For each
set, we calculate the first four moments of each of these univariate series. This process is also
applied to the actual return data. Subsequently, we determine the average absolute distance
between the moments of the scenario sets and the moments of the true data. The results of this
process are presented in Table 3. The rationale behind this univariate analysis stems from the
recognition of the importance of effectively capturing the moments of observed return distribu-
tions, as emphasized in Topaloglou et al. (2008). The objective is to analyze the differences in
these moments across the various scenario sets. What we observe is that, starting from 4000,
the differences start to become smaller and converge. We contend that the number of scenarios
used should be set to either 4000 or 5000.

N Mean Standard deviation Skewness Kurtosis
1000 0.067% 0.081% 0.115 0.478
2000 0.051% 0.064% 0.085 0.435
3000 0.041% 0.060% 0.071 0.404
4000 0.035% 0.056% 0.065 0.402
5000 0.033% 0.055% 0.060 0.394

Table 3: Average absolute differences in moments of univariate stock return distributions,
different scenario sizes; 100 replications.

To gain more insight, we also conduct an evaluation of the complete multivariate scenario
sets. In this assessment, we solve the two-stage SMIM with α= 95% under both the different
scenario sets as well as the actual data for µ = 0.2%, µ = 0.3%, µ = 0.35%, µ = 0.38% and
µ= 0.4%. Linear interpolation on the obtained objective values is performed to plot the efficient
frontiers generated from each scenario set. Without loss of generality, we will solely concentrate
on the results and the associated solving times, omitting detailed examination of the portfolio
solutions and other parameters. The efficient frontiers are illustrated in Figure 6 and the
associated runtimes are presented in Table 4. Each point on the efficient frontier represents a
specific portfolio allocation, and the curve itself depicts the trade-off between risk and return.
Portfolios that lie on the efficient frontier are considered efficient because they provide the
maximum return for a given level of risk or the minimum risk for a given level of return. The
rationale for plotting different efficient frontiers against each other is to assess the similarity
between the frontiers generated from the T copula scenario sets and those obtained using the
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actual return data as second-stage scenarios. Ideally, we aim for the frontier of the selected
T copula scenario set to lie relatively close to the frontier derived from the actual data. This
proximity suggests that similar portfolio decisions are made, indicating that the generated
multivariate scenario series likely stems from a distribution similar to that of the actual data.
Based on this rationale, we choose to set N = 5000. By examining the information in Table 4, we
contend that the runtimes and model size associated with N = 5000 are manageable. While the
model size grows linearly with the number of scenarios, the runtime increases exponentially.
In light of this, we argue against exploring scenario sets of any greater size. Therefore, in
alliance with the insights from the univariate analysis, we opt to set N = 5000.

Figure 6: Efficient frontiers: actual data scenarios (black) &
N = 3000 (purple), N = 4000 (orange) and N = 5000 (green) T Copula scenarios.

N = 3000 N = 4000 N = 5000
# Rows 249081 332081 415081
# Columns 321105 428105 535105
# Nonzeros 957260 1276260 1595260
Runtime (seconds) 139.82 184.74 327.55

Table 4: T Copula scenarios: problem sizes & runtimes.

6.3 In-Sample Scenario Analaysis

Now that we have determined a copula model and the number of scenarios, an in-sample
analysis on the scenarios can be performed based on the tests proposed in Kaut, Wallace,
Vladimirou, and Zenios (2007). In this analysis, we generate 10 scenario sets from the T copula
with N = 5000. The objective is to demonstrate that, regardless of the specific scenario set cho-
sen, the optimal objective value from the two-stage SMIM remains approximately the same.
We argue that this implies the portfolio compositions under the different scenario sets are sim-
ilar. The need for this additional in-sample analysis is underscored by Yamai and Yoshiba
(2002), who identify a potential drawback of CVaR in that it can be notably unstable when
considered with fat-tailed distributions. As evident, this is a characteristic often observed in
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stock return distributions. If the in-sample analysis consistently yields stable optimal objective
values across the different scenario sets, we contend that our method adequately captures the
fat-tail property in stock return distributions.

In Table 5a, we present the complete results of the in-sample analysis for µ = 0.2% and
µ= 0.3%. Table 5b provides the relevant summary statistics. We argue that the objective values
exhibit a desirable degree of stability for both values of µ. Notably, there is a slight uptick in
instability for µ = 0.3% compared to the results for µ = 0.2%. We attribute this increase in
volatility to the fact that µ= 0.3% represents an above-average minimum expected return rate.
Specifically, given that the average weekly return rate for the DJI in the period 2010-2018 is
approximately 0.2%. Consequently, we contend that this marginal rise in instability is not a
cause for concern.

Table 5: In-sample scenario analysis.

Sample µ= 0.2% µ= 0.3%
1 3.24% 3.44%
2 3.19% 3.36%
3 3.12% 3.27%
4 3.47% 3.80%
5 3.17% 3.45%
6 3.25% 3.61%
7 3.27% 3.52%
8 3.21% 3.46%
9 3.22% 3.68%
10 3.03% 3.22%

(a) Model 95% CVaR values.

µ= 0.2% µ= 0.3%
Mean 3.22% 3.48%
Median 3.21% 3.45%
Standard deviation 0.11% 0.18%

(b) Average, median and standard deviation of
95% CVaR values.

7 Portfolio Results

The decisions made regarding the data and scenarios in the previous section will now be
leveraged to generate portfolio solutions in various settings. We initiate this section with a
direct comparison of the performance, composition, and characteristics of the obtained portfo-
lio solutions and the actual market performance, composition, and characteristics of the DJI
benchmark index. Subsequently, we perform a sensitivity analysis on these results for a set
of relevant parameters. After this, we delve into an out-of-sample scenario analysis, wherein
we compare the performance of the portfolio solutions generated under the proposed scenario
generation method to the performance of the portfolio solutions generated under Monte Carlo
scenarios. Following this, we investigate the impact of different rolling horizons on the perfor-
mance of the portfolios. The section concludes by comparing the performance and compositions
of the portfolios derived from the two-stage SMIM and the three-stage SMIM.

Throughout this analysis, if not mentioned differently, the user-specified parameters and
deterministic input data is as follows: The critical percentage level for (C)VaR is set to α= 95%.
We assume the initial portfolio only consists of cash, and we set the initial cash position to
C = 1,000,000. The minimum position per stock is set to wmin = 100. M is set sufficiently
large. Even though our model does allow for differing scenario probabilities for the scenarios,
for simplicity, we assume that the probabilities for respectively the second-stage scenarios and
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the third-stage scenarios are equal. That is, pn = 1
N = 1

5000 and p(n, j) = 1
N

1
J = 1

5000
1

10 = 1
50000 .

We set K = 10. All experiments have been carried out on a Windows machine with CPU AMD
Ryzen 5 4500U @ 2.38GHz and 8 GB of RAM.

7.1 Benchmark Experiments

Figure 7 depicts the value of a hypothetical $1 invested either directly in the DJI or in
one out of four derived portfolio solutions under different µ values obtained from the two-stage
SMIM. The obtained portfolio solutions are constant over time, that is, no rolling horizon is
applied. Evident from the figure, in-line with the results in the existing literature, the portfolio
solutions obtained from the two-stage SMIM either closely track or slightly outperform the
DJI index. This is already a significant finding on its own, given that in the two-stage model,
we can only select 10 out of 30 stocks to assign weights to. Moreover, we find that the return
trajectories of the portfolios derived from the two-stage SMIM tend to be much more stable than
the return trajectory of the DJI, suggesting that these portfolios likely exhibit significantly
smaller risk levels.

Figure 7: Value of $1 invested in DJI (red) &
µ= 0.1% (blue), µ= 0.2% (green), µ= 0.3% (orange), µ= 0.4% (purple).

To validate this assertion, we present the summary statistics of the portfolios in Table 6.
Extending on the existing literature, we augment these statistics by including metrics for the
observed daily 95% CVaR. Clearly, all four derived portfolios consistently maintain a compa-
rable weekly return level to the DJI index while demonstrating a markedly smaller 95% daily
CVaR. This outcome is of considerable significance, suggesting that the two-stage SMIM we
propose can allocate portfolio weights from the same set of stocks as the DJI in a more risk-
efficient manner. Furthermore, we observe that the average weekly return of all four portfolios
exceeds the pre-specified minimum expected portfolio return µ. Notably, the portfolios exhibit
not only significantly reduced risk under the CVaR measure but also when considering stan-
dard deviation as a risk measure.

In a practical scenario, we argue that the company would have set µ= 0.2%, aligning with
the approximate average weekly return observed in the historical return dataset. If the com-
pany were to construct its portfolio based on the recommendations of our proposed two-stage
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SMIM, it would have achieved a weekly return rate close to that of the DJI, surpassing the
pre-specified return rate µ. Moreover, the daily 95% CVaR for their portfolio would have been
0.5% lower than the daily 95% CVaR observed in the DJI returns. This reduction in CVaR, par-
ticularly on an initial portfolio value of e.g. $1,000,000 and larger, holds significant financial
implications.

µ= 0.1% µ= 0.2% µ= 0.3% µ= 0.4% DJI
Average weekly return 0.38% 0.39% 0.42% 0.44% 0.40%
Daily 95% CVaR -1.48% -1.47% -1.53% -1.83% -1.97%
Daily S.D. 0.65% 0.65% 0.66% 0.77% 0.79%

Table 6: Benchmark portfolio performances: summary statistics.

7.2 Sensitivity Analysis

In this section, we perform sensitivity analysis on the values of α, K and w̃min. In this anal-
ysis, we place emphasis not only on the performance metrics of the derived portfolios but also
on scrutinizing the composition of these portfolios. Performing sensitivity analysis on SMIMs
is crucial, given the inherent uncertainties in such models. By analyzing to what extend the
portfolio solutions are affected by changes in user-specified parameters, we can say something
about the robustness of the SMIM.

In Table 7, portfolio statistics for different values of α are presented. Immediately, we
observe that the portfolio statistics are stable for all considered values of α, indicating that
the model tends to be robust to changes in α. Considering that in the two-stage SMIM, the
α values determine the objective of the model, it seems fair to not only consider the observed
daily 95% CVaR, but also the daily 90% CVaR and the daily 99% CVaR. It is noteworthy that the
most favorable realized daily α%-CVaR consistently emerges from the SMIM solved under the
corresponding α value. This observation emphasizes the capability of the proposed two-stage
SMIM not only to optimize the CVaR level within the model but also to generate portfolios that
are optimal for the observed α%-CVaR. Adding to this observation, even though differences
are small, we would also like to mention that it makes sense that the average weekly return
seems to be decreasing as the α level increases. This makes sense, as a higher critical CVaR
level typically is associated with a lower expected return because the optimization strategy
aims to control the tail risk, potentially sacrificing some average return to achieve a more
robust portfolio against extreme events. Conversely, a lower critical level would imply a less
conservative stance, allowing for higher expected returns but potentially exposing the portfolio
to larger losses in tail scenarios. This is also what we see for the daily 99% CVaR values. The
portfolio solution generated under α = 99% has a significantly smaller observed daily CVaR
level compared to the portfolios generated under α= 95% and α= 90%.

In Table 8, we present portfolio statistics for different values of K . As anticipated, there is
more variability in the portfolio statistics across the various K values. Specifically, for K = 4, it’s
notable that the two-stage SMIM fails to select four stocks in a manner that approximates the
return level of the benchmark index. However, starting from K = 6 and extending up to K = 16,
we observe a general consistency in the return levels. Significantly, the daily 95% CVaR levels
for all values of K are notably smaller compared to the daily 95% CVaR of the benchmark index.
This robust observation provides a high level of confidence that the two-stage SMIM, under our
proposed scenario-generation methodology, consistently generates portfolios that significantly
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enhance risk efficiency in comparison to the benchmark index.
Table 9 showcases portfolio statistics for various values of w̃min. In general, the findings

align with what has been observed in the sensitivity analysis of α and K . It is intriguing to
note that, in this specific setting, the highest level of risk-efficiency is associated with higher
values of w̃min. We posit that this is attributed to the compelled higher level of diversification
linked with an increased w̃min. This concept aligns with contemporary portfolio diversification
theory, which posits that a well-diversified portfolio typically mitigates associated risk metrics.

α= 90% α= 95% α= 99%
Average Weekly Return 0.39% 0.39% 0.38%
Daily 90% CVaR -1.15% -1.17% -1.15%
Daily 95% CVaR -1.47% -1.47% -1.48%
Daily 99% CVaR -1.98% -2.00% -1.89%
Daily S.D. 0.65% 0.65% 0.65%

Table 7: Portfolio statistics for different values of α.

K= 4 K= 6 K= 8 K= 10 K= 12 K= 14 K= 16
Average Weekly Return 0.29% 0.39% 0.37% 0.39% 0.31% 0.36% 0.37%
Daily 95% CVaR -1.42% -1.55% -1.44% -1.47% -1.43% -1.43% -1.44%
Daily S.D. 0.65% 0.68% 0.65% 0.65% 0.63% 0.63% 0.65%

Table 8: Portfolio statistics for different values of K .

w̃min = 100 w̃min = 200 w̃min = 300 w̃min = 400 w̃min = 500
Average Weekly Return 0.39% 0.36% 0.38% 0.39% 0.41%
Daily 95% CVaR -1.47% -1.41% -1.43% -1.43% -1.44%
Daily S.D. 0.65% 0.62% 0.63% 0.63% 0.64%

Table 9: Portfolio statistics for different values of w̃min

We now move attention to the changes in portfolio composition under different values of
α, K and w̃min. The changes are visualized in Figure 8. Eyeballing the figures reveals some
interesting trends. A noteworthy observation, consistent with the assertion made in Cui et al.
(2020), is the prevalence of analogous structures in efficacious solutions. Irrespective of the pa-
rameter values considered, there tends to be a regularity wherein certain stocks consistently
are assigned substantial weights in the two-stage SMIM solution. Examining Figure 8b, it
becomes apparent that higher values of w̃min correspond to a tendency for increased diversi-
fication. In other words, stocks, on average, tend to be assigned higher weights, supporting
the earlier discussion on the benefits of diversification. Intriguingly, the anticipated increase
in diversification associated with higher values of K does not materialize as one might expect,
as illustrated in Figure 8c. Instead, a discernible pattern emerges where a specific group of
5 stocks consistently receives substantial weights, while others are allocated the minimum
weight, w̃min.
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(a) Portfolio compositions for different values of α.
(b) Portfolio compositions for different values of
w̃min.

(c) Portfolio compositions for different values of K .

Figure 8: Portfolio compositions.

In concluding this section, we contend that, when K attains a sufficiently large value, the
precise selection of K exerts minimal influence on both the resulting portfolio compositions
and their performances. Similarly, regarding composition, an analogous assertion can be made
for α. However, in the case of α, it is prudent to emphasize the significance of aligning α

with the true critical level that the company aims to minimize CVaR for. Our analysis reveals
that setting α to this critical level in the two-stage SMIM indeed yields portfolios with the
most favorable empirical CVaR performance. In instances where a well-diversified portfolio is
a paramount objective, attention to adjusting the parameter w̃min to a desired level becomes
essential.
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7.3 Out-of-Sample Scenario Analysis

In Section 6.3, we performed an in-sample analysis on the scenarios, to assess the stability
of the scenarios within the model. The out-of-sample scenario analysis in this section assesses
the quality of the scenarios by comparing the performance of the portfolios generated under our
proposed scenario-generation method with the performance of the portfolios generated under a
scenario-generation method based on Monte Carlo (MC) sampling of the historical return data.
In the existing literature, out-of-sample scenario analysis is typically performed by analyzing
the portfolio performance similar to what we have done in the previous section. Then, it is
argued that, given the portfolio solutions derived from their model are able to track some
benchmark index, the scenarios are of high quality. From this rationale, the previous section
suggests that our proposed scenario-generation methodology is able to generate scenarios of
high quality. However, we believe that it is desirable to also provide results based on a different
scenario generation process, such that the effect of the proposed scenario-generation method
on the portfolio performance can be better isolated.

Utilizing MC sampling on the historical return data, we generated 1800 second-stage weekly
return scenarios. Similar to the process for the copula second-stage scenarios, for each second-
stage weekly return scenario, we generated 10 third-stage scenarios using the first method
proposed in 4.2. In Table 10, the portfolio performances under these scenarios are juxtaposed
with the portfolio performances under the copula scenarios for different values of µ. We find
that the average weekly return rates are quite similar under the two scenario methods. How-
ever, portfolios generated under the copula scenarios exhibit a significantly smaller daily 95%
CVaR in three out of the four cases. This reduction in CVaR underscores that, despite the cop-
ula method being less straightforward than a simpler method such as MC sampling historical
data, it is advantageous due to its ability to produce more risk-efficient portfolio solutions.

Copula MC
Avg. Weekly Return 0.38% 0.36%
Daily 95% CVaR -1.48% -1.63%
Daily S.D. 0.65% 0.68%

(a) µ= 0.1%.

Copula MC
Avg. Weekly Return 0.39% 0.40%
Daily 95% CVaR -1.47% -1.53%
Daily S.D. 0.65% 0.65%

(b) µ= 0.2%.

Copula MC
Avg. Weekly Return 0.42% 0.42%
Daily 95% CVaR -1.53% -1.68%
Daily S.D. 0.66% 0.70%

(c) µ= 0.3%.

Copula MC
Avg. Weekly Return 0.44% 0.41%
Daily 95% CVaR -1.83% -1.73%
Daily S.D. 0.77% 0.75%

(d) µ= 0.4%.

Table 10: Portfolio statistics: copula scenarios & MC scenarios.

7.4 Rolling Horizon

Up to this point, we have only considered static portfolio solutions. However, given the na-
ture of our problem setting, it is natural to analyze the impact of a rolling horizon on the portfo-
lio performances. One might anticipate that, considering our model assumes the company has
the flexibility to adjust its portfolio over time, employing a rolling horizon where portfolio com-
positions dynamically evolve throughout the evaluation period would result in more favorable
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performance compared to portfolios that remain constant. This notion is well-acknowledged
in the existing literature on the PSP in stochastic settings, where obtaining portfolio solutions
within a rolling horizon is common. In fact, employing a rolling horizon is common in stochas-
tic programming in general, given that it can essentially be considered an approximation of
a multi-stage model. It allows for a nuanced exploration of the potential effects of additional
stages. In our study, the rolling horizon solution approach involves solving the two-stage SMIM
after every pre-specified time interval. During each iteration, the initial portfolio is updated
with the portfolio from the previous period, and prices are adjusted to reflect the new time
point. While existing literature often opts for a single rolling horizon period frequency, we aim
to provide additional insights by exploring various rolling horizon frequencies. This investiga-
tion not only sheds light on the impact of a rolling horizon approach on portfolio performance
but also allows us to gain insights into how the choice of the period affects performance.

Figure 9 showcases the evolution of portfolio composition within a monthly rolling horizon.
Notably, while the overall composition of the portfolio generally remains consistent over time,
there is discernible active rebalancing in every month. This implies that the composition es-
tablished in the preceding month is likely sub-optimal in the current month. Consequently, it
suggests a preference for a dynamic portfolio rebalancing strategy over a static approach.

To validate this assertion, we present portfolio statistics for µ= 0.2% under various rolling
horizons in Table 11. It should be noted that the yearly rolling horizon statistics are identi-
cal to those in Section 7.1, as both evaluate performance over a one-year period. A consistent
observation is the improvement in both CVaR and weekly return levels when implementing
a rolling horizon strategy compared to a static portfolio strategy. Consequently, the adoption
of a rolling horizon strategy consistently contributes to the development of more risk-efficient
portfolio solutions. Focusing on the differences in results under the selected rolling horizon fre-
quencies, the differences are negligible. However, the rolling horizon results can be considered
as a robustness check on our static results. That is, even if we solve the model 12 times in
the monthly rolling horizon under different prices, the portfolios generated consistently yield
stable returns and CVaR levels. Concluding, the results in this section suggest to employ a
dynamic portfolio rebalancing strategy over a static portfolio strategy.

Figure 9: Portfolio composition over time, µ= 0.2%, monthly rolling horizon.
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Yearly Half Yearly Quarterly Monthly
Average Weekly Return 0.39% 0.42% 0.41% 0.41%
Observed Daily 95% CVaR -1.47% -1.44% -1.46% -1.46%
Observed Daily S.D. 0.65% 0.63% 0.63% 0.65%

Table 11: Portfolio statistics for µ= 0.2%, different rolling horizons.

7.5 Three-Stage SMIM

We now move attention to portfolios generated from the three-stage model proposed in Sec-
tion 2.6. Focus will be laid not only on the performance of the portfolios generated, but also on
the impact on the portfolio composition compared to the portfolio composition generated with
the two-stage model. Figure 10 displays the differences in portfolio compositions between the
portfolios obtained from the two-stage model and the portfolios obtained from the three-stage
model. In this comparison, the exact same second-stage- and third-stage scenarios are used
such that the three-stage extension effect is isolated. It is clear that the three-stage extension
changes the optimal portfolio composition. This suggests that it might be meaningful to con-
sider third-stage scenarios of proven high quality, given that the optimal portfolio allocations
clearly depend on the third-stage scenarios.

To evaluate the impact of the extension on portfolio performance, Table 12 compares the
outcomes of portfolios obtained from the two-stage model with those derived from the three-
stage model. While the weekly return levels show similarity, consistently smaller CVaR values
are observed for portfolios derived from the three-stage model. This suggests that the three-
stage model may be capable of producing portfolios with enhanced risk-efficiency compared to
those generated from the two-stage model. Further exploration into the influence of improved
third-stage scenario generation techniques on these results would be intriguing and is an av-
enue deserving of additional research.

Figure 10: Portfolio compositions: two-stage SMIM- (blue) & three-stage SMIM (red), µ= 0.2%.
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µ= 0.1% µ= 0.2% µ= 0.3% µ= 0.4%
Average Weekly Return Two-Stage SMIM 0.38% 0.39% 0.42% 0.44%
Average Weekly Return Three-Stage SMIM 0.37% 0.38% 0.41% 0.44%
Observed Daily 95% CVaR Two-Stage SMIM -1.48% -1.47% -1.53% -1.83%
Observed Daily 95% CVaR Three-Stage SMIM -1.47% -1.44% -1.47% -1.82%

Table 12: Portfolio performance for different µ values, yearly rolling horizon.

8 Conclusion & Discussion

In this study, we underscore the significance of considering market uncertainty in portfo-
lio allocation by employing a two-stage SMIM for the PSP. This model aims to minimize the
CVaR of the portfolio while adhering to a set of practical constraints. The model integrates
market uncertainty by representing future asset prices through a scenario tree. Our proposed
approach utilizes a parametric copula-based method for generating scenarios within this tree.
We illustrate that this method effectively captures the excess kurtosis evident in both univari-
ate and multivariate asset return series. Moreover, the portfolio solutions derived under these
scenarios are stable, establishing its suitability for use in a CVaR minimization model. The
methodology for both the models and scenarios are merged to derive portfolio solutions for the
stocks that contribute to the DJI index. Consistent with the existing literature, our findings
demonstrate that the obtained portfolio solutions effectively track the DJI index, utilizing only
a third of the stocks included in the DJI.

A key contribution of our study is that, despite the derived portfolio solutions demonstrat-
ing similar return levels to the DJI index, those generated from our two-stage model exhibit
substantially smaller CVaR values. These results are robust to changes in parameters. This
highlights the ability of our model to produce portfolios that are more risk-efficient, which
has not been empirically demonstrated before in similar literature. Moreover, we demonstrate
that by employing a rolling horizon strategy to solve our two-stage model, risk-efficiency is
enhanced even more. This indicates that portfolios generated from our model exhibit optimal
performance when implemented under a dynamic portfolio rebalancing strategy.

Another key contribution of our study is the inclusion of a three-stage extension to the two-
stage SMIM. This extension shifts the objective from minimizing the CVaR associated with the
average expected future returns in the two-stage model to minimizing the CVaR linked with
the true expected future returns. Despite the substantial increase in the size of the problem in-
troduced by this extension, our findings reveal that the three-stage model generates portfolios
that further improve risk-efficiency.

The last significant contribution is the proposal of a decomposition algorithm for the two-
stage SMIM. Two-stage SMIMs that address the PSP typically do not adhere to a standard
structure utilized in many efficient solving algorithms, such that it requires for novel tech-
niques. Where the existing literature employs methods that yield approximate solutions, the
decomposition algorithm we propose is able to yield exact solutions.

Despite the significant findings, we do acknowledge certain limitations in this study. Firstly,
while comparing portfolios derived from our model to the DJI index is a rational and well-
justified approach given the inherent nature of the actual data, it also presents itself as the
sole rational method. Comparing the derived portfolios to those of other two- and multi-stage
PSP models is deemed impractical. This impracticality stems from the inherent stochasticity in
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such models and the diverse modeling decisions made, rendering a direct parallel comparison
with other methods in the literature exceedingly challenging. Therefore, it is challenging to
make a direct comparison to determine if one model performs "better" than another model.
Secondly, it is impossible to include all practical constraints investors face in the real-world
market in our model. It could be that the company we consider in the problem setting faces
other constraints that could influence the optimal portfolio allocation. Lastly, it is important to
note that the solution algorithm presented in this study has not undergone numerical testing.
Consequently, we are unable to provide a comprehensive assessment of its performance relative
to existing algorithms employed in analogous models.

Building on the findings of our study, we propose several potential avenues for future re-
search. Firstly, considering the effectiveness of a rolling horizon strategy in obtaining portfolio
solutions, it prompts the exploration of incorporating additional stages in the original two-
stage model. This suggestion arises from the notion that portfolio solutions under a rolling
horizon strategy can be viewed as approximations of a multi-stage model. To our knowledge,
no studies exist that solve a multi-stage SMIM for the PSP, so this is definitely an area that
warrants further research. Secondly, considering the influence of the quality of third-stage
scenarios on the derived portfolio solutions when extending the original two-stage model to a
three-stage model, we propose further research and evaluation studies focused on asset return
scenarios conditional on the last observed asset price, given that this could lead to even more
risk-efficient portfolio solutions. Lastly, it is worth highlighting the significance of obtaining
numerical results for the decomposition algorithm introduced in this study. This aspect stands
as a compelling avenue for exploration, and we plan to delve into it in future research.
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Appendix

A Introduction to two-stage recourse models

This section commences with a concise theoretical overview on the class of two-stage linear
mixed-integer recourse (MIR) models. In upcoming sections, we will find that this class of mod-
els naturally arises in the context of a PSP with market uncertainty. The general formulation
for a two-stage MIR model is given by the minimization problem

min
x∈X

{c⊤x+Q(x) : Ax = b} (67)

Here, Q(x) is referred to as the expected value function (EVF)

Q(x) := Eω[vω(x)] (68)

, where E[vω(x)] is the mathematical expectation of the second-stage cost function

vω(x) := min
y∈Y

{q⊤
ω y : Wωy= hω−Tωx} (69)

For n1,n2, p1, p2 nonnegative integers with p1 ≤ n1 and p2 ≤ n2, x ∈ X ⊂ Rn1−p1
+ ×Zp1

+ is the
first-stage decision variable vector and y ∈ Y ⊂ Rn2−p2

+ ×Zp2
+ is the second-stage decision vari-

able vector. The first-stage cost vector is given by c ∈ Rn1 and the second-stage cost (recourse)
vector is given by qω ∈Rn2 for all ω ∈Ω, whereΩ is the set of possible realizations of the random
vector consisting of uncertain second-stage data ω with known probability distribution P. In
(67), the right-hand side represent the constraints related to the first-stage decisions. In (69),
Tω is the (random) technology matrix related to the first stage decisions x, Wω is the (random)
recourse matrix related to the second stage decisions y and hω the (random) right-hand side
vector. Collectively, they formulate the constraints for the second-stage cost function vω(x).
From (67), we observe that in the first stage, we minimize the costs associated with the first-
stage decisions plus the expected costs of the optimal second-stage decisions. We can consider
the solution to the second-stage problem (69) as a recourse action, where Wωy compensates for
violations in the random goal constraints Tωx = hω and q⊤

ω y are the associated costs of this
recourse action.

Typically, in line with our approach in this paper, we assume that the random vector ω has
a finite number of scenarios ω1, ..,ωN with corresponding probability masses p1, .., pN . With
slight abuse of notation, let us write vωn = vn for the second-stage cost function in scenario n,
n ∈ 1, ..., N. Then, we can reformulate the EVF in (68) as

Q(x) :=
N∑

n=1
pnvn(x). (70)

This notation allows us to formulate the minimization problem in (67) as one large linear
mixed-integer programming (MIP) problem. This is referred to as the deterministic equiva-
lent of the model, and, assuming N finite scenarios, is of the form

min
x∈X ,y1,..,yN∈Y

c⊤x+ q⊤
1 y1 + q⊤

2 y2 +·· ·+ q⊤
N yN (71)

Ax = b
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T1x+W1 y1 = h1

T2x +W2 y2 = h2

...
. . .

...

TN x +WN yN = hN .

The model presented in (71) takes the form of a conventional linear mixed-integer program
(MIP), which can be effectively solved utilizing established solvers. However, it must be noted
that as the number of scenarios increases significantly, these kind of models can become very
large, posing heavy computational challenges that make it impractical to solve the model as a
linear MIP. In the case where p2 = 0 such that the set Y contains no integer restrictions, Q
is convex (Haneveld, van der Vlerk, and Romeijnders, 2020). Numerous decomposition algo-
rithms have been developed that exploit this convexity, with one of the most well-known being
the L-shaped algorithm (van Slyke and Wets, 1969). However, for the case where p2 > 0 such
that the set Y can contain both continuous and integer restrictions, these conventional algo-
rithms can not be utilized, as this often leads to non-convexity of Q (Schutlz et al., 1998). For
an overview of algorithms and corresponding assumptions that can be utilized to handle the
non-convexity of Q, we refer to Li and Grossmann (2019).
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