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Example Calculation  
Insurers are often interested in the uncertainty around the 0.5% 
percentile. Suppose that 100,000 scenarios are used, one can then 
estimate the 0.5%-percentile by taking the value with rank  
100,000 ⋅ 0.5% = 500 from the sorted sample. 
 
Using the asymptotic distribution result, one can construct a 95% 
confidence interval width for the rank numbers as 
Δ = 1.96 ⋅ �100,000 ⋅ (1 - 0.5%) ⋅ 0.5% = 43.7, which we round  
up to 44. 
 
Hence, the simulation uncertainty for the 0.5% percentile in a Monte 
Carlo sample of size N = 100,000 can be estimated by taking the values 
with ranks 500 - 44 = 456 and 500 + 44 = 544 as bounds for the 95% 
confidence interval (illustrated in the figure below). 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 1: 95% Confidence interval for the SCR can be constructed 
from the scenarios with ranks k - Δ (scenario 456) and k + Δ 
(scenario 544). 
 

C A S E  S T U D Y :  C R E D I T  R I S K  C A P I T A L  
In order to illustrate the method, we apply it to credit risk capital 
calculations. Management here aims to ensure the number of 
simulations is sufficient to keep uncertainty around the capital estimate 
below a predefined threshold. 
 
To this end, we assess the credit risk capital’s simulation uncertainty 
across different numbers of scenarios, with the results shown in the 
figure below.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Simulation uncertainty for credit risk capital, as function 
of the number of scenarios 

 
Based on these outcomes, a minimum of 69,000 scenarios is necessary 
to achieve a simulation uncertainty below the set materiality threshold. 
To ensure robustness, management opts for 100,000 scenarios, 
enhancing risk management and decision-making. 
 

I M P A C T  O F  N U M B E R  O F  S C E N A R I O S  O N  S I M U L A T I O N  
U N C E R T A I N T Y  
When analyzing the relationship between simulation uncertainty and 
the number of scenarios using log-scales, an important pattern 
emerges: the simulation uncertainty decreases proportionally to the 
square root of the number of scenarios N, see the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Log-log scale for the simulation uncertainty as function 
of the number of scenarios. 

 
This relationship implies that to achieve an estimate with half the 
uncertainty, you must quadruple the number of scenarios. Conversely, 
if a lower number of scenarios would be used (e.g. due to limited 
computational resources), the error in the estimates increases 
accordingly.  
 
This square root dependency highlights the diminishing returns of 
increasing the number of scenarios: while more scenarios reduce 
uncertainty, achieving a significantly higher accuracy requires 
exponentially more scenarios.  
  
C O N C L U S I O N  
This article presents an efficient approach to manage simulation 
uncertainty for percentiles and VaR. By focusing on in-sample estimates 
and leveraging theoretical properties of order statistics, practitioners 
can measure the uncertainty of simulated risk estimates without the 
need for extensive re-sampling.  
 
This method can be beneficial for practitioners in various fields: 
 
1. Insurance: Partial internal models used by insurance companies  

benefit from accurate percentile estimates, enhancing the 
precision of market, life, and non-life SCR calculations. 

2.Pensions and Asset Liability Management: In the report of the  
Advies Commissie Parameters (2022, p71-72) this method is used 
to estimate the 5% and 95% percentiles of accumulated pension 
at retirement, improving risk assessment and decision-making 
under various economic scenarios. 

3.Banking: For various capital calculations, accurate simulation  
uncertainty estimates lead to more reliable risk assessments and 
capital requirements. ■ 
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1 – For more advanced calculations, percentiles can also be determined using 
interpolation between adjacent values, which allows for a (slightly) more precise estimate. 
The described method can be generalized to incorporate these interpolation techniques.

28 de actuaris oktober 2024
risk management

Accurate estimates of simulation uncertainty around 

percentiles and Value-at-Risk (VaR) measures are 

important for various practical applications in 

insurance, pensions and banking.  

 

Managing simulation uncertainty requires using an 

adequate number of scenarios to produce reliable risk 

estimates. The simplest approach for determining 

simulation uncertainty would be to reperform the 

calculations many times (with a different seed or via 

bootstrapping) and measure the variation in the 

outcomes of the re-simulated estimates. However, 

given that in practice often 100,000 scenarios or 

more are used, this approach is quite impractical.  

 

In this article we describe an alternative method 

based on an ‘in-sample’ estimate of the simulation 

error. This ‘in-sample’ estimate relies solely on the 

original simulations to determine the uncertainty 

around the percentile, making it practical to 

compute.

U N D E R S T A N D I N G  P E R C E N T I L E S  A N D  C O N F I D E N C E  
I N T E R V A L S  
A percentile is a measure that indicates the value below which a given 
percentage of observations in a group falls. For example, the 90th 
percentile of a dataset is the value below which 90% of the 
observations lie. Often value-at-risk or expected shortfall risk measures 
are applied in finance to calculate capital requirements, and for 
pensions to provide insights in future outcomes. 
 
A confidence interval provides a range of values that likely contain the 
population parameter (in this case, the percentile) with a specified 
level of confidence. For instance, a 95% confidence interval for the 
90th percentile means we are 95% confident that the true 90th 
percentile falls within this range. 
 
T H E O R I C A L  R E S U L T  
We have a theoretical result regarding the probability distribution of 
order statistics, as detailed in [1] and [2]. For a uniform distribution, as 
the sample size N tends to infinity, the p-quantile (or the value below 
which p% of the data falls) becomes asymptotically normally 
distributed with mean p and variance  p (1-p)

N     . 
 
Although our data isn't uniformly distributed, sorting the sample allows 
us to treat the ranks as if they were from a uniform distribution scaled 
by the sample size N. Hence, the rank numbers of the sorted sample 
represent a scaled uniform order statistic which convergences 
asymptotically to a normal distribution with mean N ⋅ p and variance  
N ⋅ p ⋅ (1-p).  
 
Therefore, by sorting our original data and considering the ranks, we 
can leverage on this theoretical result for estimating percentiles and 
their variability. For instance, to estimate the p-th percentile in our 
data, we can use the value corresponding to the rank N ⋅ p in the 
sorted sample. Additionally, we can use the standard error 
 �N ⋅ p ⋅ (1-p) of the rank numbers to construct a confidence interval 
for quantifying the uncertainty around our percentile estimate. 
 
S T E P S  T O  C O N S T R U C T  T H E  C O N F I D E N C E  I N T E R V A L  
The steps to construct the confidence interval are as follows: 
 
1.Sample size and percentile: Let N be the number of simulations and  

p be the desired percentile (e.g. p = 0.005 or the 0.5th percentile) 
2.Sort the data: let X1 denote the smallest outcome, X2 the second  

smallest outcomes, and so on until the largest outcome XN. 
3.Percentile Calculation1: Calculate the percentile by taking the value  

Xk , with rank k = N ⋅ p  
4.Critical value: For a desired confidence level 𝛼 (e.g. 𝛼 = 0.05 for  

95% confidence interval), the critical value z is derived from the  
standard normal distribution as z = N-1 (1 - 𝛼 /2 ). For 95%  
confidence interval z ≈ 1.96. 

5.Confidence interval: Calculate the confidence interval width for the  
rank numbers as Δ = ceil (z𝛼 ⋅  �N ⋅ p ⋅ (1-p)) and construct the  
confidence interval bounds Xk-Δ and Xk+Δ around the pth percentile  
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