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This article explores how LLMs can be leveraged for 

code conversion in finance.

B A C K G R O U N D  
In the finance sector, there is a trend to convert models and code from 
one language to another, amongst others due to the following reasons: 
 
• Productivity gains: enhancing and improving current workflows with  

new implementations that can further automate tasks, can lead to 
efficiency gains. 

• Improve maintainability: existing codebases can become difficult to  
maintain and finding developers with expertise in languages that 
have become less popular can be challenging. 

• Performance boost: due to increasing demands on the existing  
systems a performance boost might be required. 

• Quality boost: the quality of existing code and models might not  
meet modern standards. 
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With advancements in natural language processing (NLP), large 
language models (LLMs), such as GPT-4, have shown promise in aiding 
code conversion tasks. The LLMs perform well in the direct translation of 
relatively simple code (e.g. scripts). This article explores how LLMs can 
be leveraged for code conversion in finance, focusing on three key 
areas: handling non-direct translations, addressing data integration 
challenges, and dealing with lack of unit tests. 
 
Throughout our discussion, we'll highlight best practices and potential 
limitations to consider when employing LLMs in your code conversion 
projects. For non-direct translations, a code example is given. More 
examples are given in the accompanying working paper1. 
 
N O N - D I R E C T  T R A N S L A T I O N S  
A challenge in code conversion is translating code that has no direct 
equivalent in the target language. This often occurs when dealing with 
language-specific features or specialized libraries. Consider this SAS 
code that performs linear regression with forward selection of 
explanatory variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exhibit 1: SAS code for linear regression with forward variable 
selection. 

Proc Reg data=CleanedData outest=ADJRSQ_summary; 
    Title 'Adjusted R-Squared - Training data'; 
    model TARGET_AMT= 
           log_INCOME 
           No_Income 
           [Some variables omitted for brevity] 
           URBANCITY_HU /selection = FORWARD AIC VIF BIC MSE groupnames= 'EDUCATION' 'JOB' 'CAR_TYPE'; 
    
    output out=ADJRSQ_out pred=yhat residual=resid ucl=ucl lcl=lcl cookd=cook 
    covratio=cov dffits=dfits press=prss; 
run;

1 – See Jochems (2024), Code conversion using LLMs, working paper.
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2. The bad: There is no guarantee that the regression and forward  
selection algorithm that are being used will lead to the same 
outcome. For the regression algorithm, there might be 
implementation differences that cause (numerical) difference. 
Similarly, there could be differences in the implementation of 
optimization measures that could cause different variables to 

Exhibit 2: LLM translated python code for regression with forward variable selection.

def forward_selection_custom(X, y) -> list[str]: 
    initial_features = [] 
    remaining_features = list(X.columns) 
    best_features = [] 
  
    while remaining_features: 
        criterion_candidates = [] 
        for feature in remaining_features: 
            X_selected = X[initial_features + [feature]] 
            model = sm.OLS(y, X_selected).fit() 
            criterion_candidates.append((feature, model.aic)) 
  
        best_candidate = sorted(criterion_candidates, key=lambda x: x[1])[0] 
  
        if best_candidate[1] < model.aic: 
            # Code omitted for brevity 
            ... 
        else: 
            break 
    
    return best_features 
  
def run_regression(X, y): 
    selected_features = forward_selection_custom(X, y) 
    X_selected = X[selected_features] 
    model = sm.OLS(y, X_selected).fit() 
    return model, selected_features

 
Translating this to Python requires implementing the forward selection 
algorithm and handling the various output statistics. Here's how an LLM 
might approach this translation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
When considering the quality of the translation, some observations can 
be made: 
 
1. The good: the LLM has done a decent job of implementing its own  

forward selection regression algorithm, without the input prompt 
specifying that this was required. 
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enter. Both are issues that could or could not really matter, 
depending on the specific application. 

3. The ugly: the SAS code has a particularity that isn’t included in the  
translation. This is the part that specifies “groupnames …”. This 
essentially tells SAS that these are categorical variables (meaning 
that they have values in a few categories instead of numerical 
values) and how the model should deal with those. This feature is 
completely missing in the Python code. 

                                          
Best Practice: Iterative Refinement 
When dealing with non-direct translations like this SAS to Python 
conversion, it is best practice to use the LLM-generated code as a 
starting point. Then, iteratively refine the code with domain expertise. 
In this case, you might need to adjust the forward selection algorithm 
to more closely match SAS's implementation, deal with categorical 
variables or add additional diagnostic statistics that are important for 
your specific use case.  
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, LLMs can also generate tests using so-called mocks. What 
this does is essentially replacing part of the code with pre-generated 
outcomes. This is for example especially useful for testing if the 
regression model implementation differs between SAS and Python, 
without the results being influenced by the outcomes of the variable 
selection. 
 
Limitation: Domain-Specific Knowledge and Edge Cases 
LLMs may struggle with highly specialized financial models or 
proprietary libraries. In our SAS example, the LLM didn't fully 
implement all the options specified in the original code. With further 
iterative refinement, this can be improved.  
 
Moreover, even though it may seem that LLMs generate good test cases, 
they could also be subtly wrong, even when the code looks good at first 
glance. It's important to review and supplement the generated tests 
with domain-specific test cases that reflect real-world usage of your 
models.  
 
By combining LLM-generated code with rigorous testing and domain 
expertise, you can ensure that your converted code not only replicates 
the functionality of the original but also keeps the robustness required 
for financial applications. 
 
C H A L L E N G E S  O F  I N T E G R A T I N G  C O D E  I N T O  E X I S T I N G  
S Y S T E M S  
Beyond function conversions, integrating new code into pre-existing 
architectures presents additional challenges, especially in finance 
where systems often use specialized frameworks like Object-Relational 
Mappers (ORMs). 
 
A common challenge arises when moving from systems that handle 
data with tables or dataframes (such as R or SQL) to those using ORMs 
(e.g., SQLAlchemy for Python or Entity Framework for C#). LLMs may 
convert the logic but might not account for database schema details or 
query optimizations crucial for performance. 
 

Best Practice: Context Awareness 
To improve the translation, we can provide the LLM with context 
about our ORM setup, model relationships, and project conventions. 
With this context, the LLM could produce a more appropriate 
translation. 
 
Limitation: Performance Considerations 
While the context-aware translation is more aligned with the 
project's structure, it's crucial to note that ORMs can sometimes 
generate suboptimal SQL, especially for complex queries. For instance, 
if this query is performance-critical, one might need to add indexing 
hints or partitioning strategies that are specific to your database 
system. 
 
U N I T  T E S T I N G  
Unit testing, i.e., the act of testing small components of functionality 
in isolation, is fundamental to ensuring high-quality 
implementations, helping to pinpoint functionality issues and 
document expected behaviour. However, in practice, many financial 
models brought to production often lack comprehensive unit tests. 
LLMs can play a crucial role in addressing this gap. 
 
LLMs can assist in generating unit tests for both the original code and 
the target language implementation. This capability is particularly 
valuable when dealing with models developed in Excel, SAS, R, or 
Python that lack existing unit tests. 
 
When converting code, LLMs can not only translate the logic but also 
generate corresponding unit tests to ensure the results remain 
consistent across both languages. By auto-generating these 
functional tests, LLMs reduce the manual overhead needed for 
verifying that the converted code remains consistent with the original 
version. 
 
Best Practice: Comprehensive Testing 
When using LLMs for code conversion, it's crucial to generate unit 
tests for both the original and converted code. This approach helps to 
ensure that the functionality stays consistent across languages. 
Tolerance-based testing can be used to account for minor 
discrepancies in floating-point arithmetic between languages. 
 
Limitation: Test Coverage 
While LLMs can generate basic test cases, they may not cover all edge 
cases or complex scenarios specific to your financial models. It's 
important to review and supplement the generated tests with 
domain-specific test cases that reflect real-world usage of your 
models. These tests can be generated manually, or be generated 
through additional prompting. 
 
C O N C L U S I O N  
LLMs present a powerful tool for accelerating code conversion in 
finance, offering solutions for common problems in practice, such as 
unit testing, non-direct translations, and data integration 
challenges. However, their effective use requires a balanced approach 
that combines automated conversion with human expertise. By 
following best practices such as iterative refinement, comprehensive 
testing and providing context to LLMs, financial institutions can 
leverage these tools to modernize their technology stack more 
efficiently. At the same time, it's crucial to be aware of limitations 
around test coverage, domain-specific knowledge, and performance 
optimization. 
 
As LLM technology continues to evolve, its role in code conversion and 
software development is likely to expand, offering even greater 
possibilities for streamlining financial technology operations. 
However, the key to success will always lie in combining the power of 
AI with human expertise and domain knowledge. ■ 
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