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potentially conflicting) mathematical formulations and which has a 
specific meaning in US law. For the remainder we therefore focus on 
property (i), as precisely formulating property (ii) remains in part an 
open research question. 
 
A D J U S T I N G  F O R  P O T E N T I A L  P R O X Y  D I S C R I M I N A T I O N  
The premium μ (x ) does not explicitly use the protected information D, 
and is hence not subject to direct discrimination. Nonetheless, we 
cannot be certain that it will not be affected by proxy discrimination. 
This is because, the calculation of μ (x ) implicitly reflects the 
dependence between D and X. To see this more clearly, consider the 
situation where D = 0 (“man”) or 1 (“woman"), for which we can write: 
 

μ (x ) = μ (x ,d=0)p (d=0|x ) + μ (x ,d=1)p (d=1│x )      (1)  
 
where p(d|x) denotes the probability of a policyholder having the sex  
D = d, given the non-protected information X = x. This illustrates how 
standard covariates may carry information about the protected 
covariate D. At the extreme, if we could perfectly predict the sex based 
on non-protected information, then there would be no practical 
difference between direct and indirect discrimination. 
 
We can however remove the potential for proxy discrimination, by 
modifying Eq. (1) to: 
 

μ*(x )) = μ (x ,d=0)p* + μ (x ,d=1)(1-p*),                  (2) 
 
where p* is some probability between 0 and 1 for which the portfolio 
fraction of D = 0 is a natural choice. We call the adjusted premium from 
Eq. (2) the discrimination-free insurance price (DFIP), see also Ref. [5] 
where the DFIP is discussed in more generality and detail. By using 
μ*(x ) any potential dependence between X and D – and hence any 
proxy discrimination — has been removed, without requiring further 
assumptions.  
 
C O N C L U S I O N  A N D  O U T L O O K  
Through the pricing method of Eq (2), we have proposed a way to 
adjust actuarially fair prices in order to address proxy discrimination. 
Importantly for practice, the calculation of DFIP is model-agnostic, in 
the sense that it can be derived as an adjustment to any pricing model, 
from GLMs to complex machine learning models. Nonetheless, in order 
to determine the DFIP in Eq. (2), it is necessary to have access to the 
more detailed price μ (x,d ), which can only be estimated using 
protected data. Thus, to appropriately quantify the materiality of proxy 
discrimination and correct for it, the collection of some protected 
information is needed. This requirement may raise privacy concerns 
and a technical solution is discussed in Ref. [6]. 
 
A further consideration is about which types of covariates should be 
used in the first place, when calculating an insurance price. Some 
policy features may be classified as risk factors, if they have a direct 
causal effect on claims, see e.g. [3, 1, 8]. Standard rating factors are 
not necessarily assumed to causally impact Y; instead they are 
characterised by statistical association with Y. In Ref. [5] it is shown 
that, following certain causal assumptions, the DFIP from Eq. (2) will 
coincide with the expected direct causal effect of X on Y. However, in 
real-world applications it is rarely the case that all risk factors are 
observed or that their causal interrelations are fully understood. In 
these situations, the causal effect can likely not be assessed, and the 
causal connection to Eq. (2) is lost. Nonetheless, also in such more 
complex settings, the DFIP will still correctly adjust for proxy 
discrimination. Furthermore, a requirement to use only risk factors with 
a direct causal effect on claims will likely reduce the number of 
covariates that are available, see [3]. This, despite its conceptual 
appeal, will also incur a cost in terms of predictive accuracy. 

 
Finally, arguments around discrimination relate to notions of 
algorithmic fairness, which has attracted considerable attention in the 
machine learning literature. For example, there is persistent concern 
that machine learning algorithms discriminate against sub-
populations, in applications ranging from e.g., mortgage lending to 
facial recognition [2]. Algorithmic fairness is typically defined in terms 
of statistical properties of predictors. For example, in order to satisfy 
demographic parity, a predictor μ ̂(X ) should be independent of D. This 
means that there should be no statistical association between risk 
predictions and protected characteristics. This is a very penal 
requirement, because in situations where there is some statistical 
association between the nonprotected covariates X and the protected 
covariates D, the prices are not allowed to include any information 
from X. Requiring that prices are statistically independent from 
protected covariates implies that in some portfolios, e.g. where 
policyholders from one demographic group are more likely to engage in 
high risk behaviours (e.g. smoking), it becomes impossible to apply risk 
pricing. We note that this is not the case with the DFIP, which allows 
risk pricing based on non-protected covariates, only adjusting for their 
proxying effect. More generally, this illustrates potential conflicts 
between adjusting for proxy discrimination, while trying to satisfy 
common algorithmic fairness conditions. For more, examples see [7]. ■ 
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Over the last decade there has been a surge in 

applying machine learning techniques in non-life 

insurance pricing. This is mainly due to cheaper data 

collection and storage, combined with new analysis 

methods for unstructured data and increased 

computational power. In parallel there have been 

rising concerns about data privacy and hidden 

implications of using “black-box” price predictions.

An obvious concern when using black-box models for pricing is that of 
implicit discrimination. As we will see below, this is always a potential 
issue, regardless of the model, and this is regulated in EU-law, see [4]. 
A related question is that of (algorithmic) fairness, and below it will be 
seen that these two concepts will often fail to agree. 
 
Further, in order to adjust for implicit discrimination, discriminatory 
information needs to be collected (more on this below), which is a 
privacy concern in itself. More generally, this relates to the question of 
which covariates that are suitable to use for pricing. This in turn 
connects to discussions about covariates’ causal effects and risk factors. 
However, below it will be seen that this is not essential for avoiding 
implicit discrimination. 
 
T H E  A C T U A R I A L L Y  F A I R  P R E M I U M  A N D  D I S C R I M I N A T I O N  
Let X denote the covariates (rating factors or policy features), and Y the 
claim cost that we try to predict. The actuarially fair premium, μ (x ), is 
defined as μ (x ) = E [Y | X = x] and can be interpreted as the best 
prediction of the future claim cost Y, given the specific policy features  
X = x. Charging the premium μ (x ) to each policyholder will on average 
generate a total premium income equal to the expected claim cost. 
 
How will pricing be affected when there are covariates, D, that are 
considered protected, such as sex or ethnicity? For example, EU 
regulation [4] stipulates that insurers are not allowed to price 
insurance policies based on sex, neither directly nor indirectly. Direct 
discrimination occurs when the price explicitly depends on D. 
Therefore, the actuarially fair, best-estimate, premium based on all 
information, μ (x,d ) = E [Y | X = x, D = d], cannot be used by insurers, 
since it explicitly depends on D. The definition of indirect 
discrimination is more complex [4] and can be interpreted as reflecting 
two distinct ideas:  
 
(i) when using the non-protected covariates X, adjustments should  

be made to ensure that D is not implicitly proxied by X;  
(ii) the effect of the pricing practice should not lead to a disadvantage  

for either sex. 
 
Property (i) is meant to prevent proxy discrimination by requiring that D 
cannot be learned from X; e.g. for some portfolios a policyholder’s 
ethnicity may be accurately predicted from their postcode. For property 
(i) one can give a statistical definition [5]. Property (ii) is referred to as 
disparate impact, for which there are multiple alternative (and 
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