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Under the general model in this article and the imposed affine 
functions, Duffie, Pan, and Singleton (2000) have shown that the form 
of the characteristic function is given by  
 
y (u; (Xt) = eC (u,t ) + D (u,t )Xt , 

 
where the values for C (u,t ) and D (u,t ) are found by solving the complex 
valued Ordinary Differential Equations (ODE) below 
 
∂D (u,t )

 = -K�1D (u,t ) - 
1

D (u,t )�H1D (u,t ) , 
    
∂t                           
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∂D (u,t )

 = -K�0D (u,t ) - 
1

D (u,t )�H0D (u,t ) , 
    
∂t                           
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with boundary solutions D (u,t ) = u and C (u,t ) = 0. Note that in the 
expression, C (u,t ) is a scalar and in case of multivariate models D (u,t ) is 
a vector with dimensions equal to the number of variables. By solving 
this ODE, I obtain the closed-form expression for the characteristic 
function of a multivariate SDE in a straightforward way. Furthermore, it 
can be shown that from the characteristic function, the k-th moment 
can be derived using the relation below 
 

E [Xk ] = 
1  ∂kf (u; xt ) 

            i
k        ∂uk          u=0  . 

 
Using the relation above, I directly obtain the k-th moment condition 
of any stochastic differential equation. By deriving at least as many 
moment conditions as there are model parameters, I use the empirical 
GMM method to estimate the model parameters in the general model. 

The choice of empirical data is specific to each asset class resulting in 
different parameter values. Note that some external variables, such as 
the volatility, might be latent and would require a proxy to obtain 
historical values. Once the model parameters are estimated using GMM, 
I use the forward Euler Method to generate forecasted valuations of 
asset classes such as fixed income, equity and real estate. The horizon 
of the scenario set and the number of scenarios can be freely chosen as 
part of this method allowing for a flexible and convenient use. 
 
The method described in this article can be used to derive moment 
conditions of any multivariate stochastic model. Due to the complexity 
of multivariate models, the closed-form expression of the density 
functions is not always known, making the MLE method difficult. As an 
alternative method, I propose a method based on GMM and the 
characteristic function. Even though the density function may not be 
known in closed-form, the characteristic function can be found in a 
straight forward way. After obtaining the closed-form expressions of 
the moment conditions using the characteristic function, I estimate the 
model parameters using the empirical GMM method based on financial 
data for each asset class. Once the parameters are estimated, I can use 
the model to simulate valuations of the asset classes as I like. ■ 
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Economic scenario sets can be incredibly valuable in 

tackling uncertainties in the financial world. 

Scenario sets can give great insights in the possible 

future outcomes and allow practitioners to determine 

a strategic approach to various uncertainties. Even 

though the added value of a scenario set is clear, it 

can be incredibly difficult to create a scenario set of 

high quality. In literature, there is a significant 

amount of research related to generating economic 

scenario sets. There exist various well described one 

dimensional models such as the Black-Scholes and the 

Vasicek model, but both of these models have their 

own drawbacks. One of the pitfalls of both is that 

they assume constant volatility and assume no 

interaction with other macro-economic factors such as 

inflation. The last two years have painfully 

demonstrated that volatility in financial markets is 

variable over time and that macro-economic factors 

such as inflation impact a broad range of economic 

variables. In this article, I show how to implement 

stochastic volatility and external factors such as 

inflation to well described models. The result of this 

extension is that the accuracy of the scenario set 

increases, yielding better insight in potential future 

outcomes.  

I consider economic scenario sets consisting of forecasted valuations of 
various broadly-defined asset classes such as fixed income, equity and 
real estate. In order to obtain forecasted valuations for these asset 
classes, a state variable for each of the asset classes needs to be 
modelled over time. Even though these models might differ for each 
asset class, for the sake of convenience, I consider a general model 
where the model parameters can be adapted for each asset class 
specifically. The purpose of this article is to show how I can add 
variables to a general one dimensional model as I like. In the general 
model, I assume a state vector Xt which consists of the state variable for 
the asset class and additional variables of choice e.g. volatility and 
inflation. For the basic form of the model, I assume a stochastic 
differential equation (SDE) with drift μ (Xt), volatility σ (Xt), and 
Brownian motion Wt. Consequently, I impose a general stochastic 
differential equation of the form 
 

dXt = μ (Xt)dt + σ (Xt)dWt . 
 
In case of a multidimensional state vector Xt, the Brownian motion Wt 
in the equation above will be multivariate. As is done in many financial 
models, for the sake of convenience and tractability, I impose a general 
affine structure on the drift μ (Xt) and volatility σ (Xt) given by 
 

μ (Xt) = K0 + K1Xt , 
σ (Xt)σ (Xt)�= H0 + H1Xt . 

 
Note that Xt, K0, K1, H0, and H1 are all vectors with a dimension equal 
to the number of state variables. Also note that for certain values of K0, 
K1, H0, and H1, I can obtain the well described Black-Scholes and 
Vasicek model.  
 
The quality of a scenario set is highly dependent on the accuracy of the 
model parameters. A model which estimates model parameters 
inaccurately will be inherently flawed. In case of a one dimensional 
model, the Maximum Likelihood Estimation (MLE) method can be used 
to derive an estimator with desirable statistical properties such as 
consistency and efficiency. In the case of certain multidimensional 
models however, the closed-form expression of the density functions is 
not always known. This makes using the MLE significantly more difficult 
and as a result alternative methods are preferred.  
 
One such alternative method is the Generalised Method of Moments 
(GMM). GMM can be used to derive an estimator which is consistent and 
is the most efficient estimator in the class of estimators based on 
moment conditions. In order to derive the GMM estimator, a 
practitioner derives the characteristic function, from which moment 
conditions can be easily obtained. While the density function may not 
be known in closed-form, the characteristic function can be found in a 
straight forward way. In the remainder of this article, I show how to 
derive the expression for the characteristic function and use the 
characteristic function to derive the moment conditions for GMM.  
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