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Figure 4: Out of sample residuals produced by using the LC and
two deep neural network models to forecast mortality rates for the
populations in the HMD.

I N T E R P R E T A T I O N  W I T H I N  T H E  L E E - C A R T E R  P A R A D I G M
Deep learning has been criticised as often being difficult to interpret.
We can provide an intuitive explanation of how the convolutional
model works in the framework of the LC paradigm for mortality
forecasting. As mentioned above, the three sets of features derived
with the neural network – which are features relating to population,
gender and those derived using the convolutional network - are used
directly in a GLM to forecast mortality. We show this mathematically
using simplified notation in the following equation: 

log (μx,t ) � ax + ax + bx . kt ,

which states that the neural network predicts mortality based on new
variables that have been estimated from the data, represented as
variables with a ‘hat’. The first two of these (ax  and ax ) play the role
of estimating the average mortality for the population p and gender g
under consideration, respectively, and in combination are equivalent to
the ax term in the Lee-Carter model. The third of these variables is a
time index derived directly from the mortality data, which is equivalent
to the kt term in the LC model. This time index is calibrated each time
new data is fed to the network, meaning to say, we have eliminated
the two-stage procedure mentioned earlier, of fitting the model and
then producing forecasts through extrapolation.

Thus, the seemingly complex model presented in this article can be
interpreted in terms that are familiar to actuaries working in mortality
forecasting. 

C O N C L U S I O N
We introduce a new mortality forecasting model in this article which
uses a neural network to process mortality data directly to produce
forecasts. The model has a simple interpretation within the framework
of the original LC model and produces forecasts on the HMD with high
out of sample accuracy. The model generalises well indicating that it is
robust for the purpose of population mortality forecasting. Further
investigation could focus on applying the model to insurance portfolio
data, which often span shorter time periods than population data, and
consideration of how uncertainty intervals might be generated. ■
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KLIMAAT
Climate Transition Risk 
– A Quantitative Impact Study 
for ORSA Scenarios

Since the Paris Agreement, climate change is gaining

attention by the day. In the financial sector,

legislative and regulatory bodies are at the forefront

of developments. EIOPA recently published its

Supervisory Convergence plan 2021 stating ‘EIOPA will

be taking step-by-step measures for integrating the

assessment and management of Environmental,

Social and Governance (ESG) risks into prudential and

conduct supervision’. EBA, EIOPA and ESMA have

drafted the Regulatory Technical Standards (RTS)

under the Sustainable Disclosure Regulation (SFDR)

and Klaas Knot (president of DNB) recently told an

audience at Bruegel that ‘for economic

transformation to take hold, you need to have

relative prices that reflect the true scarcity of

economic resources. In this case, by pricing in the

climate cost of greenhouse gas emissions’.

Climate risk at least includes physical risks stemming from changing
climate itself, and changes in investment conditions due to the
transition towards a low-carbon economy (transition risk). In its
research ‘Tijd voor Transitie’ (2016), DNB already indicated a potential
material impact of transition risk for insurers and pension funds. In
this article, we explore this effect further and present a case study
with a practical approach to address and quantify climate change
related asset risks within an ORSA setting. 

Quantification of climate-change related risks faces a major
challenge: The absence of empirical data on which such risk models
are typically calibrated. For transition risks particular, future
development almost exclusively depends on political decisions,
leading to vastly different possible economic trajectories
(‘endogeneity’). The presence of deep uncertainty and strong tail
events further complicates the matter. As a consequence, the
essential ingredient of any quantitative approach towards the
evaluation of climate-related risks has to be a forward-looking
valuation based on established climate change scenarios.

The general approach1 upon which this case study is based follows 
the conceptual framework of the CLIMAFIN-methodology by Battiston
et. al.2. While recent regulatory opinions and guidelines were taken
into account, our particular focus lies on an effective implementation.
Our approach is divided into 3 steps, with the construction of a
suitable climate risk scenario as a preparatory step.

1. Translation of a given climate risk scenario into shocks on 
quantitative economic KPIs, such as profit margins, market shares
or growth prospects.

2.Using the shocks on the economic KPIs as input for appropriate 
asset valuation methods to obtain shocks on relevant risk factors.

3.Aggregation of risk factor shocks to portfolio level, possibly taking 
into account second-order effects from indirect holdings via,
e.g., financial institutions.
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Figure 1: Asset Allocation of the Sample Insurer

In our study, we focus on upward shocks of CO2-prices as a primary
target of climate policies, changing asset values adversely. The
associated transition risk is estimated for two sample insurers with a
typical asset allocation for European insurers as seen in Figure 1. The
distinctive feature of the second insurer is its ESG-oriented investment
strategy. While we assume the standard insurer to invest in broad
market indices, the ESG-oriented insurer’s portfolio only allows for such
issuers which are classified as ‘ESG-leaders’ by index providers.

Similar to previous studies assessing effects of climate policies, we draw
on existing research on climate risk and select scenarios from the WP1-
LIMITS database3. The working package WP1 explores global mitigation
pathways for limiting global temperature increase below 2°C. In
particular, we consider two scenarios that vary along policy targets and
assumptions about decisiveness and cooperation of policymakers. 

– RefPol-500 assumes a more lenient policy and hence a lower level 
of disruptiveness to the status quo. The policy target is an
atmospheric CO2 concentration of 500ppm in the year 2100, which
is commonly associated with a rough 50:50 chance of reaching the
2°C target.

– StrPol-450 assumes stronger policy action in the near-term and 
targets a concentration of 450ppm in the year 2100. This is usually
associated with a 2:1 chance of reaching the 2°C target from the
Paris agreement. Consequently, the carbon price level is
substantially higher compared to the weaker RefPol-500 scenario.

We assume an instantaneous and disorderly transition from the status
quo towards one of these policy scenarios. Although in general an
impact assessment at a sectorial level is feasible, we differentiate here
only a regional level for presentational simplicity. 

In the first step, we calculate the impact of the CO2 price shock on the
profitability of an average issuer from either Europe, North America or
Asia Pacific. We assume a zero short-run price elasticity, i.e. increased
costs due to the policy are carried by the business. This assumption is

justified as a first approximation, since consumer prices are typically
not adjusted in the short-term and the cost is hence incurred
somewhere along the supply chain. The following impacts are
observed:

– Since currently CO2-prices in North America or Asia Pacific are 
effectively very limited, the profitability shocks on both regions are
relatively high.

– The profitability shock on the European issuer is substantially 
smaller. Moderate CO2-prices are already in place within the EU.
Consequently, the CO2-price shocks are smaller and translate to
smaller profitability shocks in this region. 

– Since ESG leaders on average operate in a more environmentally 
friendly way, the profitability shocks on those are generally lower
due to overall lower emissions.

In the second step, we calculate resulting shocks on equities and credit
spreads. For equity shocks, we assume a Gordon-Growth Model with
constant payout ratio. Secondary exposures via financial institutions are
reflected by a shock on the financial sector assuming an equity beta of
one.

For fixed income, we use a Merton Model enhanced with an additional,
deterministic climate risk shock derived from the previously calculated
equity shock. Spread widenings are then calculated based on implied
changes in migration and default probabilities.

Again, due to existing climate protection measures, the impact on
European securities in the more lenient RefPol-500 scenario is quite
limited for both equities and fixed income – equities receive a
moderate shock of around 5%, while the downgrade probability
increases by a factor of 1.6 on average. In the stronger StrPol-450
scenario, this impact is considerably more substantial with a 15%
shock on equities and an increase of migration probabilities by a factor
of 3.3. By comparison, the impacts on North American securities are
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Figure 3: Impact of Policy Scenarios on Sample Insurers

Figure 2: Scenario Variables and Risk Factor Impacts

quite limited despite strong absolute profitability shocks. The striking
difference lies in the fact that North American markets are strongly
dominated by profitable tech companies, that have considerably more
resilience towards climate policy shocks as compared to the industrial-
heavy companies that are more prevalent in Europe.

The two model insurers under consideration are based in Europe, hence
their primary exposure is towards European securities. Consequently,
the effects on the Solvency II ratio largely mirror the impacts on the
European markets. The weaker scenario RefPol-500 has a moderate
effect on the ratio, reducing the original ratio of 128% to 119% for the
standard insurer and 123% for the ESG insurer. 

In the stronger policy scenario, the differences become quite
substantial as the ratio for the non-ESG-insurer decreases by about
35%, while it decreases by about 20% for the ESG-oriented insurer.
Notably, this result emphasizes the significant reduction of exposure
towards climate transition risk provided by a green investment strategy.
This mitigation effect becomes more pronounced the more adverse the
policy scenarios.

Despite some simplifying assumptions, the case study clearly
demonstrates that the impact of transition risks on the Solvency II
ratio for a typical insurer is likely to be material. This risk may be
substantially mitigated by shifting towards a more ESG-oriented
investment approach.

The quantitative assessment of sustainability risks will play an
increasingly significant role in the further development of the
Solvency II regulatory requirements. Insurers should be ready to meet
these requirements – with regard to both their individual risk
exposure as well as process-wise integration. ■

1 – See: https://www.oliverwyman.com/our-expertise/insights/2021/jan/sustainability-
risk-under-solvency-ll.html

2 – Battiston, Mandel, Monasterolo, CLIMAFIN Handbook: Pricing Forward-Looking
Climate Risk under Uncertainty, Working Paper, Climate Finance Alpha 

3 – https://tntcat.iiasa.ac.at/LIMITSDB/static/download/LIMITS_overview_SOM_Study_
Protocol_Final.pdf


